5,227 research outputs found

    Active C4 electrodes for local field potential recording applications

    Get PDF
    Extracellular neural recording, with multi-electrode arrays (MEAs), is a powerful method used to study neural function at the network level. However, in a high density array, it can be costly and time consuming to integrate the active circuit with the expensive electrodes. In this paper, we present a 4 mm × 4 mm neural recording integrated circuit (IC) chip, utilizing IBM C4 bumps as recording electrodes, which enable a seamless active chip and electrode integration. The IC chip was designed and fabricated in a 0.13 ÎŒm BiCMOS process for both in vitro and in vivo applications. It has an input-referred noise of 4.6 ÎŒV rms for the bandwidth of 10 Hz to 10 kHz and a power dissipation of 11.25 mW at 2.5 V, or 43.9 ÎŒW per input channel. This prototype is scalable for implementing larger number and higher density electrode arrays. To validate the functionality of the chip, electrical testing results and acute in vivo recordings from a rat barrel cortex are presented.R01 NS072385 - NINDS NIH HHS; 1R01 NS072385 - NINDS NIH HH

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 ÎŒm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-ÎŒm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 ÎŒm wide, 10 mm long, 20 ÎŒm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    A power efficient neural spike recording channel with data bandwidth reduction

    Get PDF
    This paper presents a mixed-signal neural spike recording channel which features, as an added value, a simple and low-power data compression mechanism. The channel uses a band-limited differential low noise amplifier and a binary search data converter, together with other digital and analog blocks for control, programming and spike characterization. The channel offers a self-calibration operation mode and it can be configured both for signal tracking (to raw digitize the acquired neural waveform) and feature extraction (to build a first-order PWL approximation of the spikes). The prototype has been fabricated in a standard CMOS 0.13ÎŒm and occupies 400ÎŒm×400ÎŒm. The overall power consumption of the channel during signal tracking is 2.8ÎŒW and increases to 3.0ÎŒW average when the feature extraction operation mode is programmed.Ministerio de Ciencia e InnovaciĂłn TEC2009-08447Junta de AndalucĂ­a TIC-0281

    An Artefact suppressing fast-recovery myoelectric amplifier

    Get PDF
    An amplifier for recording myoelectric signals using surface electrodes has been developed. The special features are suppression of stimulation artefacts and motion artefacts from electrodes. It is designed for recording of myoelectric signals from a muscle that is being stimulated with short impulses. The artifact suppression is achieved by using fast-recovery instrumentation amplifiers and having a nonlinear feedback loop for automatic compensation of changes in DC-offse

    Realization of a ROIC for 72x4 PV-IR detectors

    Get PDF
    Silicon Readout Integrated Circuits (ROIC) for HgCdTe Focal Plane Arrays of 1x4 and 72x4 photovoltaic detectors are represented. The analog circuit blocks are completely identical for both, while the digital control circuit is modified to take into account the larger array size. The manufacturing technology is 0.35Όm, double poly-Si, three-metal CMOS process. ROIC structure includes four elements TDI functioning with a super sampling rate of 3, bidirectional scanning, dead pixel de-selection, automatic gain adjustment in response to pixel deselection besides programmable four gain setting (up to 2.58pC storage), and programmable integration time. ROIC has four outputs with a dynamic range of 2.8V (from 1.2V to 4V) for an output load of 10pF capacitive in parallel with 1MΩ resistance, and operates at a clock frequency of 5 MHz. The input referred noise is less than 1037 ΌV with 460 fF integration capacitor, corresponding to 2978 electrons

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    Phased Array Systems in Silicon

    Get PDF
    Phased array systems, a special case of MIMO systems, take advantage of spatial directivity and array gain to increase spectral efficiency. Implementing a phased array system at high frequency in a commercial silicon process technology presents several challenges. This article focuses on the architectural and circuit-level trade-offs involved in the design of the first silicon-based fully integrated phased array system operating at 24 GHz. The details of some of the important circuit building blocks are also discussed. The measured results demonstrate the feasibility of using integrated phased arrays for wireless communication and vehicular radar applications at 24 GHz
    • 

    corecore