5 research outputs found

    A Marketing Strategy in a Closed-Loop Supply Chain with Loss-Averse Consumers

    Get PDF

    Solving closed-loop supply chain problems using game theoretic particle swarm optimisation

    Full text link
    © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. In this paper, we propose a closed-loop supply chain network configuration model and a solution methodology that aim to address several research gaps in the literature. The proposed solution methodology employs a novel metaheuristic algorithm, along with the popular gradient descent search method, to aid location-allocation and pricing-inventory decisions in a two-stage process. In the first stage, we use an improved version of the particle swarm optimisation (PSO) algorithm, which we call improved PSO (IPSO), to solve the location-allocation problem (LAP). The IPSO algorithm is developed by introducing mutation to avoid premature convergence and embedding an evolutionary game-based procedure known as replicator dynamics to increase the rate of convergence. The results obtained through the application of IPSO are used as input in the second stage to solve the inventory-pricing problem. In this stage, we use the gradient descent search method to determine the selling price of new products and the buy-back price of returned products, as well as inventory cycle times for both product types. Numerical evaluations undertaken using problem instances of different scales confirm that the proposed IPSO algorithm performs better than the comparable traditional PSO, simulated annealing (SA) and genetic algorithm (GA) methods

    A Bi-Objective Robust Model for Location-Routing and Capacity Sharing in Districting Regions under Uncertainty

    Get PDF
    One of the most important approaches that can lead to the creation of various advantagesfor enterprises is the districting regions into the service offering locations and the demandunits, which causes the increase in level of customers’ access to get the service. On theother hand, if vehicle routing is carried out in districting regions in order to deliver productsto customers, the planning of customer service can be improved. However, in none of theresearch conducted in the area of design supply chain, vehicle routing in districting regionshas been not investigated. Therefore, in the current study, a bi-objective mathematicalmodel is presented to simultaneously focus on districting regions, facility location–allocation, service sharing, intra-district service transfer and vehicle routing. The firstobjective function minimizes the total cost of designing the CLSC network, which includescosts of opening facility and vehicle routing. The second objective function minimizes themaximum volume of surplus demand from service providers in order to achieve anappropriate balance in demand volume across all regions. Moreover, a robust optimizationapproach is used to take into account uncertainty in some parameters of the proposedmodel. In addition, the validity of the proposed mathematical model and the proposedsolution has been investigated on a real case in the oil and gas industry

    Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas

    Get PDF
    CD-T 662.88 V58; 75 pEl objetivo de esta investigación es el diseño de una cadena de suministro de biocombustible, que integre decisiones de instalaciones e inventario, en busca de la maximización del valor presente neto (VPN) del sistema. Un modelo de Programación Linea Entera Mixta (PLEM) determina la capacidad y ubicación de centros de acopio y biorefinerías, además de los flujos a lo largo de la cadena.Universidad Libre Seccional Pereir
    corecore