370 research outputs found

    Sampling-Based Motion Planning: A Comparative Review

    Full text link
    Sampling-based motion planning is one of the fundamental paradigms to generate robot motions, and a cornerstone of robotics research. This comparative review provides an up-to-date guideline and reference manual for the use of sampling-based motion planning algorithms. This includes a history of motion planning, an overview about the most successful planners, and a discussion on their properties. It is also shown how planners can handle special cases and how extensions of motion planning can be accommodated. To put sampling-based motion planning into a larger context, a discussion of alternative motion generation frameworks is presented which highlights their respective differences to sampling-based motion planning. Finally, a set of sampling-based motion planners are compared on 24 challenging planning problems. This evaluation gives insights into which planners perform well in which situations and where future research would be required. This comparative review thereby provides not only a useful reference manual for researchers in the field, but also a guideline for practitioners to make informed algorithmic decisions.Comment: 25 pages, 7 figures, Accepted for Volume 7 (2024) of the Annual Review of Control, Robotics, and Autonomous System

    Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment

    Full text link
    This paper addresses planning and control of robot motion under uncertainty that is formulated as a continuous-time, continuous-space stochastic optimal control problem, by developing a topology-guided path integral control method. The path integral control framework, which forms the backbone of the proposed method, re-writes the Hamilton-Jacobi-Bellman equation as a statistical inference problem; the resulting inference problem is solved by a sampling procedure that computes the distribution of controlled trajectories around the trajectory by the passive dynamics. For motion control of robots in a highly cluttered environment, however, this sampling can easily be trapped in a local minimum unless the sample size is very large, since the global optimality of local minima depends on the degree of uncertainty. Thus, a homology-embedded sampling-based planner that identifies many (potentially) local-minimum trajectories in different homology classes is developed to aid the sampling process. In combination with a receding-horizon fashion of the optimal control the proposed method produces a dynamically feasible and collision-free motion plans without being trapped in a local minimum. Numerical examples on a synthetic toy problem and on quadrotor control in a complex obstacle field demonstrate the validity of the proposed method.Comment: arXiv admin note: text overlap with arXiv:1510.0534

    Collision-Free Humanoid Reaching: Past, Present and Future

    Get PDF

    Neural-Swarm2: Planning and Control of Heterogeneous Multirotor Swarms using Learned Interactions

    Get PDF
    We present Neural-Swarm2, a learning-based method for motion planning and control that allows heterogeneous multirotors in a swarm to safely fly in close proximity. Such operation for drones is challenging due to complex aerodynamic interaction forces, such as downwash generated by nearby drones and ground effect. Conventional planning and control methods neglect capturing these interaction forces, resulting in sparse swarm configuration during flight. Our approach combines a physics-based nominal dynamics model with learned Deep Neural Networks (DNNs) with strong Lipschitz properties. We evolve two techniques to accurately predict the aerodynamic interactions between heterogeneous multirotors: i) spectral normalization for stability and generalization guarantees of unseen data and ii) heterogeneous deep sets for supporting any number of heterogeneous neighbors in a permutation-invariant manner without reducing expressiveness. The learned residual dynamics benefit both the proposed interaction-aware multi-robot motion planning and the nonlinear tracking control designs because the learned interaction forces reduce the modelling errors. Experimental results demonstrate that Neural-Swarm2 is able to generalize to larger swarms beyond training cases and significantly outperforms a baseline nonlinear tracking controller with up to three times reduction in worst-case tracking errors

    Physics-based motion planning for grasping and manipulation

    Get PDF
    This thesis develops a series of knowledge-oriented physics-based motion planning algorithms for grasping and manipulation in cluttered an uncertain environments. The main idea is to use high-level knowledge-based reasoning to define the manipulation constraints that define the way how robot should interact with the objects in the environment. These interactions are modeled by incorporating the physics-based model of rigid body dynamics in planning. The first part of the thesis is focused on the techniques to integrate the knowledge with physics-based motion planning. The knowledge is represented in terms of ontologies, a prologbased knowledge inference process is introduced that defines the manipulation constraints. These constraints are used in the state validation procedure of sampling-based kinodynamic motion planners. The state propagator of the motion planner is replaced by a physics-engine that takes care of the kinodynamic and physics-based constraints. To make the interaction humanlike, a low-level physics-based reasoning process is introduced that dynamically varies the control bounds by evaluating the physical properties of the objects. As a result, power efficient motion plans are obtained. Furthermore, a framework has been presented to incorporate linear temporal logic within physics-based motion planning to handle complex temporal goals. The second part of this thesis develops physics-based motion planning approaches to plan in cluttered and uncertain environments. The uncertainty is considered in 1) objects’ poses due to sensing and due to complex robot-object or object-object interactions; 2) uncertainty in the contact dynamics (such as friction coefficient); 3) uncertainty in robot controls. The solution is framed with sampling-based kinodynamic motion planners that solve the problem in open-loop, i.e., it considers uncertainty while planning and computes the solution in such a way that it successfully moves the robot from the start to the goal configuration even if there is uncertainty in the system. To implement the above stated approaches, a knowledge-oriented physics-based motion planning tool is presented. It is developed by extending The Kautham Project, a C++ based tool for sampling-based motion planning. Finally, the current research challenges and future research directions to extend the above stated approaches are discussedEsta tesis desarrolla una serie de algoritmos de planificación del movimientos para la aprehensión y la manipulación de objetos en entornos desordenados e inciertos, basados en la física y el conocimiento. La idea principal es utilizar el razonamiento de alto nivel basado en el conocimiento para definir las restricciones de manipulación que definen la forma en que el robot debería interactuar con los objetos en el entorno. Estas interacciones se modelan incorporando en la planificación el modelo dinámico de los sólidos rígidos. La primera parte de la tesis se centra en las técnicas para integrar el conocimiento con la planificación del movimientos basada en la física. Para ello, se representa el conocimiento mediante ontologías y se introduce un proceso de razonamiento basado en Prolog para definir las restricciones de manipulación. Estas restricciones se usan en los procedimientos de validación del estado de los algoritmos de planificación basados en muestreo, cuyo propagador de estado se susituye por un motor basado en la física que tiene en cuenta las restricciones físicas y kinodinámicas. Además se ha implementado un proceso de razonamiento de bajo nivel que permite adaptar los límites de los controles aplicados a las propiedades físicas de los objetos. Complementariamente, se introduce un marco de desarrollo para la inclusión de la lógica temporal lineal en la planificación de movimientos basada en la física. La segunda parte de esta tesis extiende el enfoque a planificación del movimiento basados en la física en entornos desordenados e inciertos. La incertidumbre se considera en 1) las poses de los objetos debido a la medición y a las interacciones complejas robot-objeto y objeto-objeto; 2) incertidumbre en la dinámica de los contactos (como el coeficiente de fricción); 3) incertidumbre en los controles del robot. La solución se enmarca en planificadores kinodinámicos basados en muestro que solucionan el problema en lazo abierto, es decir que consideran la incertidumbre en la planificación para calcular una solución robusta que permita mover al robot de la configuración inicial a la final a pesar de la incertidumbre. Para implementar los enfoques mencionados anteriormente, se presenta una herramienta de planificación del movimientos basada en la física y guiada por el conocimiento, desarrollada extendiendo The Kautham Project, una herramienta implementada en C++ para la planificación de movimientos basada en muestreo. Finalmente, de discute los retos actuales y las futuras lineas de investigación a seguir para extender los enfoques presentados
    corecore