5,114 research outputs found

    Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    Full text link
    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.Comment: SDM 201

    Hearing the clusters in a graph: A distributed algorithm

    Full text link
    We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained from spectral clustering without the need for expensive eigenvalue/vector computations. We prove that, by propagating waves through the graph, a local fast Fourier transform yields the local component of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs, the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We demonstrate the benefit of using this decentralized clustering algorithm for community detection in social graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed multi-agent search strategies

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012
    • …
    corecore