5 research outputs found

    Minimum Population Search, an Application to Molecular Docking

    Get PDF
    Computer modeling of protein-ligand interactions is one of the most important phases in a drug design process. Part of the process involves the optimization of highly multi-modal objective (scoring) functions. This research presents the Minimum Population Search heuristic as an alternative for solving these global unconstrained optimization problems. To determine the effectiveness of Minimum Population Search, a comparison with seven state-of-the-art search heuristics is performed. Being specifically designed for the optimization of large scale multi-modal problems, Minimum Population Search achieves excellent results on all of the tested complexes, especially when the amount of available function evaluations is strongly reduced. A first step is also made toward the design of hybrid algorithms based on the exploratory power of Minimum Population Search. Computational results show that hybridization leads to a further improvement in performance

    Randomly distributed unit sources to enhance optimization in tsunami waveform inversion

    Get PDF

    An Empirical Methodology for Engineering Human Systems Integration

    Get PDF
    The systems engineering technical processes are not sufficiently supported by methods and tools that quantitatively integrate human considerations into early system design. Because of this, engineers must often rely on qualitative judgments or delay critical decisions until late in the system lifecycle. Studies reveal that this is likely to result in cost, schedule, and performance consequences. This dissertation presents a methodology to improve the application of systems engineering technical processes for design. This methodology is mathematically rigorous, is grounded in relevant theory, and applies extant human subjects data to critical systems development challenges. The methodology is expressed in four methods that support early systems engineering activities: a requirements elicitation method, a function allocation method, an input device design method, and a display layout design method. These form a coherent approach to early system development. Each method is separately discussed and demonstrated using a prototypical system development program. In total, this original and significant work has a broad range of systems engineer applicability to improve the engineering of human systems integration
    corecore