2,202 research outputs found

    A Discontinuous Galerkin Method for Ideal Two-Fluid Plasma Equations

    Full text link
    A discontinuous Galerkin method for the ideal 5 moment two-fluid plasma system is presented. The method uses a second or third order discontinuous Galerkin spatial discretization and a third order TVD Runge-Kutta time stepping scheme. The method is benchmarked against an analytic solution of a dispersive electron acoustic square pulse as well as the two-fluid electromagnetic shock and existing numerical solutions to the GEM challenge magnetic reconnection problem. The algorithm can be generalized to arbitrary geometries and three dimensions. An approach to maintaining small gauge errors based on error propagation is suggested.Comment: 40 pages, 18 figures

    Non-modal analysis of spectral element methods: Towards accurate and robust large-eddy simulations

    Get PDF
    We introduce a \textit{non-modal} analysis technique that characterizes the diffusion properties of spectral element methods for linear convection-diffusion systems. While strictly speaking only valid for linear problems, the analysis is devised so that it can give critical insights on two questions: (i) Why do spectral element methods suffer from stability issues in under-resolved computations of nonlinear problems? And, (ii) why do they successfully predict under-resolved turbulent flows even without a subgrid-scale model? The answer to these two questions can in turn provide crucial guidelines to construct more robust and accurate schemes for complex under-resolved flows, commonly found in industrial applications. For illustration purposes, this analysis technique is applied to the hybridized discontinuous Galerkin methods as representatives of spectral element methods. The effect of the polynomial order, the upwinding parameter and the P\'eclet number on the so-called \textit{short-term diffusion} of the scheme are investigated. From a purely non-modal analysis point of view, polynomial orders between 22 and 44 with standard upwinding are well suited for under-resolved turbulence simulations. For lower polynomial orders, diffusion is introduced in scales that are much larger than the grid resolution. For higher polynomial orders, as well as for strong under/over-upwinding, robustness issues can be expected. The non-modal analysis results are then tested against under-resolved turbulence simulations of the Burgers, Euler and Navier-Stokes equations. While devised in the linear setting, our non-modal analysis succeeds to predict the behavior of the scheme in the nonlinear problems considered

    High Order Asymptotic Preserving DG-IMEX Schemes for Discrete-Velocity Kinetic Equations in a Diffusive Scaling

    Full text link
    In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of epsilon -> 0 is an explicit, consistent and high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit

    A direct method for the Boltzmann equation based on a pseudo-spectral velocity space discretization

    Full text link
    A deterministic method is proposed for solving the Boltzmann equation. The method employs a Galerkin discretization of the velocity space and adopts, as trial and test functions, the collocation basis functions based on weights and roots of a Gauss-Hermite quadrature. This is defined by means of half- and/or full-range Hermite polynomials depending whether or not the distribution function presents a discontinuity in the velocity space. The resulting semi-discrete Boltzmann equation is in the form of a system of hyperbolic partial differential equations whose solution can be obtained by standard numerical approaches. The spectral rate of convergence of the results in the velocity space is shown by solving the spatially uniform homogeneous relaxation to equilibrium of Maxwell molecules. As an application, the two-dimensional cavity flow of a gas composed by hard-sphere molecules is studied for different Knudsen and Mach numbers. Although computationally demanding, the proposed method turns out to be an effective tool for studying low-speed slightly rarefied gas flows
    • …
    corecore