4,683 research outputs found

    The Proposed High Energy Telescope (HET) for EXIST

    Get PDF
    The hard X-ray sky now being studied by INTEGRAL and Swift and soon by NuSTAR is rich with energetic phenomena and highly variable non-thermal phenomena on a broad range of timescales. The High Energy Telescope (HET) on the proposed Energetic X-ray Imaging Survey Telescope (EXIST) mission will repeatedly survey the full sky for rare and luminous hard X-ray phenomena at unprecedented sensitivities. It will detect and localize (<20", at 5 sigma threshold) X-ray sources quickly for immediate followup identification by two other onboard telescopes - the Soft X-ray imager (SXI) and Optical/Infrared Telescope (IRT). The large array (4.5 m^2) of imaging (0.6 mm pixel) CZT detectors in the HET, a coded-aperture telescope, will provide unprecedented high sensitivity (~0.06 mCrab Full Sky in a 2 year continuous scanning survey) in the 5 - 600 keV band. The large field of view (90 deg x 70 deg) and zenith scanning with alternating-orbital nodding motion planned for the first 2 years of the mission will enable nearly continuous monitoring of the full sky. A 3y followup pointed mission phase provides deep UV-Optical-IR-Soft X-ray and Hard X-ray imaging and spectroscopy for thousands of sources discovered in the Survey. We review the HET design concept and report the recent progress of the CZT detector development, which is underway through a series of balloon-borne wide-field hard X-ray telescope experiments, ProtoEXIST. We carried out a successful flight of the first generation of fine pixel large area CZT detectors (ProtoEXIST1) on Oct 9, 2009. We also summarize our future plan (ProtoEXIST2 & 3) for the technology development needed for the HET.Comment: 10 pages, 13 figures, 2 tables, SPIE Conference "Astronomical Telescopes and Instrumentation 2010"; to appear in Proceedings SPIE (2010

    FPGA Based Data Read-Out System of the Belle 2 Pixel Detector

    Full text link
    The upgrades of the Belle experiment and the KEKB accelerator aim to increase the data set of the experiment by the factor 50. This will be achieved by increasing the luminosity of the accelerator which requires a significant upgrade of the detector. A new pixel detector based on DEPFET technology will be installed to handle the increased reaction rate and provide better vertex resolution. One of the features of the DEPFET detector is a long integration time of 20 {\mu}s, which increases detector occupancy up to 3 %. The detector will generate about 2 GB/s of data. An FPGA-based two-level read-out system, the Data Handling Hybrid, was developed for the Belle 2 pixel detector. The system consists of 40 read-out and 8 controller modules. All modules are built in {\mu}TCA form factor using Xilinx Virtex-6 FPGA and can utilize up to 4 GB DDR3 RAM. The system was successfully tested in the beam test at DESY in January 2014. The functionality and the architecture of the Belle 2 Data Handling Hybrid system as well as the performance of the system during the beam test are presented in the paper.Comment: Transactions on Nuclear Science, Proceedings of the 19th Real Time Conference, Preprin
    • …
    corecore