2 research outputs found

    Flexible Communication Avoiding Matrix Multiplication on FPGA with High-Level Synthesis

    Full text link
    Data movement is the dominating factor affecting performance and energy in modern computing systems. Consequently, many algorithms have been developed to minimize the number of I/O operations for common computing patterns. Matrix multiplication is no exception, and lower bounds have been proven and implemented both for shared and distributed memory systems. Reconfigurable hardware platforms are a lucrative target for I/O minimizing algorithms, as they offer full control of memory accesses to the programmer. While bounds developed in the context of fixed architectures still apply to these platforms, the spatially distributed nature of their computational and memory resources requires a decentralized approach to optimize algorithms for maximum hardware utilization. We present a model to optimize matrix multiplication for FPGA platforms, simultaneously targeting maximum performance and minimum off-chip data movement, within constraints set by the hardware. We map the model to a concrete architecture using a high-level synthesis tool, maintaining a high level of abstraction, allowing us to support arbitrary data types, and enables maintainability and portability across FPGA devices. Kernels generated from our architecture are shown to offer competitive performance in practice, scaling with both compute and memory resources. We offer our design as an open source project to encourage the open development of linear algebra and I/O minimizing algorithms on reconfigurable hardware platforms

    FireFly v2: Advancing Hardware Support for High-Performance Spiking Neural Network with a Spatiotemporal FPGA Accelerator

    Full text link
    Spiking Neural Networks (SNNs) are expected to be a promising alternative to Artificial Neural Networks (ANNs) due to their strong biological interpretability and high energy efficiency. Specialized SNN hardware offers clear advantages over general-purpose devices in terms of power and performance. However, there's still room to advance hardware support for state-of-the-art (SOTA) SNN algorithms and improve computation and memory efficiency. As a further step in supporting high-performance SNNs on specialized hardware, we introduce FireFly v2, an FPGA SNN accelerator that can address the issue of non-spike operation in current SOTA SNN algorithms, which presents an obstacle in the end-to-end deployment onto existing SNN hardware. To more effectively align with the SNN characteristics, we design a spatiotemporal dataflow that allows four dimensions of parallelism and eliminates the need for membrane potential storage, enabling on-the-fly spike processing and spike generation. To further improve hardware acceleration performance, we develop a high-performance spike computing engine as a backend based on a systolic array operating at 500-600MHz. To the best of our knowledge, FireFly v2 achieves the highest clock frequency among all FPGA-based implementations. Furthermore, it stands as the first SNN accelerator capable of supporting non-spike operations, which are commonly used in advanced SNN algorithms. FireFly v2 has doubled the throughput and DSP efficiency when compared to our previous version of FireFly and it exhibits 1.33 times the DSP efficiency and 1.42 times the power efficiency compared to the current most advanced FPGA accelerators
    corecore