1,046 research outputs found

    On the polarizability and capacitance of the cube

    Get PDF
    An efficient integral equation based solver is constructed for the electrostatic problem on domains with cuboidal inclusions. It can be used to compute the polarizability of a dielectric cube in a dielectric background medium at virtually every permittivity ratio for which it exists. For example, polarizabilities accurate to between five and ten digits are obtained (as complex limits) for negative permittivity ratios in minutes on a standard workstation. In passing, the capacitance of the unit cube is determined with unprecedented accuracy. With full rigor, we develop a natural mathematical framework suited for the study of the polarizability of Lipschitz domains. Several aspects of polarizabilities and their representing measures are clarified, including limiting behavior both when approaching the support of the measure and when deforming smooth domains into a non-smooth domain. The success of the mathematical theory is achieved through symmetrization arguments for layer potentials.Comment: 33 pages, 7 figure

    High-order integral equation methods for problems of scattering by bumps and cavities on half-planes

    Get PDF
    This paper presents high-order integral equation methods for evaluation of electromagnetic wave scattering by dielectric bumps and dielectric cavities on perfectly conducting or dielectric half-planes. In detail, the algorithms introduced in this paper apply to eight classical scattering problems, namely: scattering by a dielectric bump on a perfectly conducting or a dielectric half-plane, and scattering by a filled, overfilled or void dielectric cavity on a perfectly conducting or a dielectric half-plane. In all cases field representations based on single-layer potentials for appropriately chosen Green functions are used. The numerical far fields and near fields exhibit excellent convergence as discretizations are refined--even at and around points where singular fields and infinite currents exist.Comment: 25 pages, 7 figure

    Fast integral equation methods for the Laplace-Beltrami equation on the sphere

    Full text link
    Integral equation methods for solving the Laplace-Beltrami equation on the unit sphere in the presence of multiple "islands" are presented. The surface of the sphere is first mapped to a multiply-connected region in the complex plane via a stereographic projection. After discretizing the integral equation, the resulting dense linear system is solved iteratively using the fast multipole method for the 2D Coulomb potential in order to calculate the matrix-vector products. This numerical scheme requires only O(N) operations, where NN is the number of nodes in the discretization of the boundary. The performance of the method is demonstrated on several examples
    • …
    corecore