1,291 research outputs found

    Design and implementation of the Quarc network on-chip

    Get PDF
    Networks-on-Chip (NoC) have emerged as alternative to buses to provide a packet-switched communication medium for modular development of large Systems-on-Chip. However, to successfully replace its predecessor, the NoC has to be able to efficiently exchange all types of traffic including collective communications. The latter is especially important for e.g. cache updates in multicore systems. The Quarc NoC architecture has been introduced as a Networks-on-Chip which is highly efficient in exchanging all types of traffic including broadcast and multicast. In this paper we present the hardware implementation of the switch architecture and the network adapter (transceiver) of the Quarc NoC. Moreover, the paper presents an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs implemented in Verilog targeting the Xilinx Virtex FPGA family. We demonstrate a dramatic improvement in performance over the Spidergon especially for broadcast traffic, at no additional hardware cost

    A communication model of broadcast in wormhole-routed networks on-chip

    Get PDF
    This paper presents a novel analytical model to compute communication latency of broadcast as the most fundamental collective communication operation. The novelty of the model lies in its ability to predict the broadcast communication latency in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    NoCo: ILP-based worst-case contention estimation for mesh real-time manycores

    Get PDF
    Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015- 65316-P and the HiPEAC Network of Excellence. It also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (agreement No. 772773). Carles Hernández is jointly supported by the MINECO and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the Spanish Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzetti has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-Incorporaci´on postdoctoral fellowship number IJCI-2016-27396.Peer ReviewedPostprint (author's final draft

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++
    corecore