18 research outputs found

    Mobility prediction and multicasting in wireless networks : performance and analysis

    Get PDF
    Handoff is a call handling mechanism that is invoked when a mobile node moves from one cell to another. Such movement may lead to degradation in performance for wireless networks as a result of packet losses. A promising technique proposed in this thesis is to apply multicasting techniques aided by mobility prediction in order to improve handoff performance. In this thesis, we present a method that uses a Grey model for mobility prediction and a fuzzy logic controller that has been fine-tuned using evolutionary algorithms in order to improve prediction accuracy. We also compare the self-tuning algorithm with two evolutionary algorithms in terms of accuracy and their convergence times. Our proposed method takes into account signal strengths from the base stations and predicts the signal strength of the next candidate base station in order to provide improved handover performance. The primary decision for mobility prediction is the accurate prediction of signal strengths obtained from the base stations and remove any unwanted errors in the prediction using suitable optimisation techniques. Furthermore, the model includes the procedures of fine-tuning the predicted data using fuzzy parameters. We also propose suitable multicasting algorithms to minimise the reservation of overall network resource requirements during handoff with the mobility prediction information. To be able to efficiently solve the problem, the situation is modelled using a multicast tree that is defined to maintain connectivity with the mobile node, whilst ensuring bandwidth guarantees and a minimum hop-count. In this approach, we have tried to solve the problem by balancing two objectives through putting a weight on each of two costs. We provide a detailed description of an algorithm to implement join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff as well as incorporating dynamic changes in the positions of mobile nodes. An analysis of how mobility prediction helps in the selection of potential Access Routers (AR) with QoS requirements - which affects the multicast group size and bandwidth cost of the multicast tree -- is presented. The proposed technique tries to minimise the number of multicast tree join and prune operations. Our results show that the expected size of the multicast group increases linearly with an increase in the number of selected destination AR's for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. A special simulation model was developed to demonstrate both homogeneous and heterogeneous handoff which is an emerging requirement for fourth generation mobile networks. The model incorporates our mobility prediction model for heterogeneous handoff between the Wireless LAN and a cellular network. The results presented in this thesis for mobility prediction, multicasting techniques and heterogeneous handoff include proposed algorithms and models which aid in the understanding, analysing and reducing of overheads during handoff

    Policy-Based Radio Resource Management in Multicast OFDMA Systems

    Get PDF
    Η ασύρματηφασματική αποδοτικότητα είναι ένας, όλο και περισσότερο, σημαντικός παράγοντας εξαιτίας της ταχείας ανάπτυξης των ασύρματων υπηρεσιών ευρείας ζώνης. Η σχεδίαση ενός συστήματος με πολλά φέροντα, όπως είναι ένα σύστημα OFDMA,επιτρέπει στα συστήματα να έχουν υψηλή χωρητικότητα για να ικανοποιήσουν τις απαιτήσεις των υπηρεσιών ευρείας ζώνης.Αυτή η αυξημένη χωρητικότητα των συστημάτων μπορεί να βελτιστοποιηθεί περαιτέρω εκμεταλλευόμενοι καλύτερα τα χαρακτηριστικά των ασύρματων καναλιών. Ηθεμελιώδηςιδέα ενός σχήματος κατανομής πόρων είναι η αποτελεσματική κατανομή των διαθέσιμων ασύρματων πόρων, όπως είναι οι υποφορείς και η ισχύς εκπομπής, μεταξύ των χρηστών του συστήματος. Σχετικά με τα προβλήματα της κατανομής πόρων σε ασύρματα συστήματα τηλεπικοινωνιών βασισμένα στην τεχνική OFDMA, η περισσότερη έρευνα επικεντρώνεται στην αναζήτηση πολιτικών ανάθεσης υποφορέων και ισχύος. Οι διαθέσιμες τεχνικές της βιβλιογραφίας δεν μπορούν να εφαρμοστούν όπως είναι σε συστήματα πολυεκπομπής. Επιπλέον, οι υπάρχουσες τεχνικές δεν μπορούν να εφαρμοστούν αμετάβλητες σε πραγματικά συστήματα στα οποία υπάρχει μεγάλος αριθμός OFDMυποφορέων, καθώς η υπολογιστική πολυπλοκότητα είναι πολύ μεγάλη. Ο βασικός στόχος της παρούσας διπλωματικής εργασίας είναι η πρόταση ικανών μηχανισμών κατανομής των διαθέσιμων υποφορέων σε ασύρματα συστήματα πολυεκπομπής χρησιμοποιώντας την τεχνολογία OFDMA. Πιο συγκεκριμένα, σχετικά με τα συστήματα πολυεκπομπής, θεωρούμε ότι τόσο ο σταθμός βάσης όσο και κάθε χρήστης είναι εφοδιασμένοι με μοναδική κεραία και η μονάδα κατανομής δεν είναι ο υποφορέας, όπως στα συμβατικά συστήματα OFDMA, αλλά μία ομάδα γειτονικώνυποφορέων, η οποία ονομάζεται τεμάχιο, με σκοπό τη μείωση της μεγάλης υπολογιστικής πολυπλοκότητας. Ένας αποτελεσματικός αλγόριθμος προτείνεται του οποίου ο στόχος είναι η μεγιστοποίηση του συνολικού ρυθμού μετάδοσης δεδομένων με περιορισμούς στη συνολική διαθέσιμη ισχύ, στο BERανά τεμάχιο και στους αναλογικούς περιορισμούς μεταξύ των ρυθμών μετάδοσης δεδομένων των ομάδων χρηστών. Η προσομοίωση και η ανάλυση της πολυπλοκότητας που παρουσιάζονται, υποστηρίζουν τα πλεονεκτήματα της κατανομής πόρων σε συστήματα πολυεκπομπήςOFDMA τα οποία βασίζονται σε κατανομή τεμαχίων και έχουν ως στόχος την εξασφάλιση της αναλογικότητας μεταξύ των ρυθμών μετάδοσης δεδομένων των ομάδων χρηστών.Wireless spectral efficiency is increasingly important due to the rapid growth of demand for high data rate wideband wireless services. The design of a multi-carrier system, such as an OFDMA system, enables high system capacity suited for these wideband wireless services. This system capacity can be further optimized with a resource allocation scheme by exploiting the characteristics of the wireless fading channels. The fundamental idea of a resource allocation scheme is to efficiently distribute the available wireless resources, such as the subcarriers and transmission power, among all admitted users in the system. Regarding the problems of resource allocation in OFDMA-based wireless communicationsystems, much of the research effort mainly focuses on finding efficient power controland subcarrier assignment policies. With systems employing multicast transmission,the available schemes in literature are not always applicable. Moreover, the existing approachesare particularly inaccessible in practical systems in which there are a large numberof OFDM subcarriers being utilized, as the required computational burden is prohibitivelyhigh. The ultimate goal of this Thesis is therefore to propose affordable mechanisms toflexibly and effectively share out the available resources in multicast wireless systems deployingOFDMA technology. Specifically, according to multicast system, it is assumed thatboth the BS and each user are equipped witha single antenna and the allocation unit is not the subcarrier,as in conventional OFDMA systems, but a set of contiguoussubcarriers, which is called chunk, in order to alleviate the heavy computational burden. An efficient algorithmis proposed whose aim is to maximize the total throughput subject to constraints on totalavailable power,BER over a chunk, and proportional data rates constraints among multicast groups. Simulation and complexity analysis are provided to support thebenefits of chunk-based resource allocation to multicast OFDMA systems with targeting proportional data rates among multicast groups

    Localization Enhanced Mobile Networks

    Get PDF
    The interest in mobile ad-hoc networks (MANETs) and often more precisely vehicular ad-hoc networks (VANETs) is steadily growing with many new applications, and even anticipated support in the emerging 5G networks. Particularly in outdoor scenarios, there are different mechanisms to make the mobile nodes aware of their geographical location at all times. The location information can be utilized at different layers of the protocol stack to enhance communication services in the network. Specifically, geographical routing can facilitate route management with smaller overhead than the traditional proactive and reactive routing protocols. In order to achieve similar advantages for radio resource management (RRM) and multiple access protocols, the concept of virtual cells is devised to exploit fully distributed knowledge of node locations. The virtual cells define clusters of MANET nodes assuming a predefined set of geographically distributed anchor points. It enables fast response of the network to changes in the nodes spatial configuration. More importantly, the notion of geographical location can be generalized to other shared contexts which can be learned or otherwise acquired by the network nodes. The strategy of enhancing communication services by shared contexts is likely to be one of the key features in the beyond-5G networks

    Modular Energy Efficient Protocols for Lower Layers of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) emerged as one of the compelling research areas in recent years. It has produced promising solutions for several potential applications such as intrusion detection, target detection, industrial automation, environmental monitoring, surveillance and military systems, medical diagnosing systems, tactical systems, etc. WSNs consist of small size of sensor nodes that are disseminated in a targeted area to monitor the events for collecting the data of interest. Meanwhile, WSNs face many challenging problems such as high energy consumption, network scalability and mobility. These problems profoundly affect the lifetime of the network, limit the access to several WSN application areas, and the Quality of Service (QoS) provision parameters including throughput, latency, bandwidth, data buffering, resource constraints, data redundancy, and medium reliability. Although, there has been significant research conducted in WSNs over the last few years to maintain a high standard of communication, especially coverage, challenges of high power consumption, mobility and scalability to name a few. The major problem with WSNs at the low layers are the excessive energy consumption by the sensor’s transceiver. Other related challenges are mobility and scalability that limit the QoS provision. To handle these issues, novel modular energy efficient protocols are proposed for lower layers of WSNs. These modular based protocols improve the energy consumption, providing cross-layering support to handle mobility, scalability and data redundancy. In addition, there is a protocol that automates handling the idle listening process. Other protocols optimize data frame format for faster channel access, data frame transfer, managing acknowledgement time and retry transmission, check the capability of sensing the nature of environment to decide to use either active or passive mode that help save energy, determine shortest efficient path, packet generation rate, automatic active and sleep mode, smart queuing, data aggregation and dynamically selection of the cluster head node. All these features ensure the QoS provision and resolve many problems introduced by mobility and scalability for multiple application areas especially disaster recovery, hospital monitoring system, remotely handling the static and mobile objects and battlefield surveillance systems. Finally, modular energy efficient protocols are simulated, and results demonstrate the validity and compatibility of the proposed approaches for multiple WSNs application areas

    Localization Enhanced Mobile Networks

    Get PDF

    Routing Strategies for Capacity Enhancement in Multi-hop Wireless Ad Hoc Networks

    Get PDF
    This thesis examines a Distributed Interference Impact Probing (DIIP) strategy for Wireless Ad hoc Networks (WANETs), using a novel cross-layer Minimum Impact Routing (MIR) protocol. Perfonnance is judged in tenns of interference reduction ratio, efficiency, and system and user capacity, which are calculated based on the measurement of Disturbed Nodes (DN). A large number of routing algorithms have been proposed with distinctive features aimed to overcome WANET's fundamental challenges, such as routing over a dynamic topology, scheduling broadcast signals using dynamic Media Access Control (MAC), and constraints on network scalability. However, the scalability problem ofWANET cannot simply adapt the frequency reuse mechanism designed for traditional stationary cellular networks due to the relay burden, and there is no single comprehensive algorithm proposed for it. DIIP enhances system and user capacity using a cross layer routing algorithm, MIR, using feedback from DIIP to balance transmit power in order to control hop length, which consequently changes the number of relays along the path. This maximizes the number of simultaneous transmitting nodes, and minimizes the interference impact, i.e. measured in tenns of 'disturbed nodes'. The perfonnance of MIR is examined compared with simple shortest-path routing. A WANET simulation model is configured to simulate both routing algorithms under multiple scenarios. The analysis has shown that once the transmitting range of a node changes, the total number of disturbed nodes along a path changes accordingly, hence the system and user capacity varies with interference impact variation. By carefully selecting a suitable link length, the neighbouring node density can be adjusted to reduce the total number of DN, and thereby allowing a higher spatial reuse ratio. In this case the system capacity can increase significantly as the number of nodes increases. In contrast, if the link length is chosen regardless ofthe negative impact of interference, capacity decreases. In addition, MIR diverts traffic from congested areas, such as the central part of a network or bottleneck points

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore