5 research outputs found

    Detection of Motion Vector-Based Video Steganography by Adding or Subtracting One Motion Vector Value

    Get PDF
    In last decades the Steganography is an tremendous progress, at the same time there exist issues to detect the steganalysis in motion based video where the substance is reliably in motion conduct that makes that to detect it. Analyzing the difference between the rated motion value plays a crucial role that enables us to focus on difference between the locally optimal SAD and actual SAD after adding-or-subtracting-one operation on the motion value. Based on the motion vectors to play out the classification and extraction process at last, two features sets are been used based on the fact that most motion vectors are locally optimal for most video codec’s to complete this process. The conventional approaches announced the technique for proposed prevails to meet the requirement applications and detecting the steganalysis in videos compare in the literature

    Implementation of Data Hiding Approach by Diverse Image Media

    Get PDF
    The network provides a method of communication to distribute information to the masses. With the growth of data communication over computer network, the security of information has become a major issue. Steganography and cryptography are two different data hiding techniques. Steganography hides messages inside some other digital media. Cryptography, on the other hand obscures the content of the message. In this paper propose a high capacity data approach by the combination of Steganography and cryptography. In the process a message is first encrypted using transposition cipher method and then the encrypted message is embedded inside an image using Higher LSB insertion method. The combination of these two methods will enhance the security of the data embedded. This combinational methodology will satisfy the requirements such as capacity, security and robustness for secure data transmission over an open channel. In this paper computing Mean square error (MSE) and Peak Signal to Noise Ratio (PSNR)

    Image steganography applications for secure communication

    Get PDF
    To securely communicate information between parties or locations is not an easy task considering the possible attacks or unintentional changes that can occur during communication. Encryption is often used to protect secret information from unauthorised access. Encryption, however, is not inconspicuous and the observable exchange of encrypted information between two parties can provide a potential attacker with information on the sender and receiver(s). The presence of encrypted information can also entice a potential attacker to launch an attack on the secure communication. This dissertation investigates and discusses the use of image steganography, a technology for hiding information in other information, to facilitate secure communication. Secure communication is divided into three categories: self-communication, one-to-one communication and one-to-many communication, depending on the number of receivers. In this dissertation, applications that make use of image steganography are implemented for each of the secure communication categories. For self-communication, image steganography is used to hide one-time passwords (OTPs) in images that are stored on a mobile device. For one-to-one communication, a decryptor program that forms part of an encryption protocol is embedded in an image using image steganography and for one-to-many communication, a secret message is divided into pieces and different pieces are embedded in different images. The image steganography applications for each of the secure communication categories are discussed along with the advantages and disadvantages that the applications have over more conventional secure communication technologies. An additional image steganography application is proposed that determines whether information is modified during communication. CopyrightDissertation (MSc)--University of Pretoria, 2012.Computer Scienceunrestricte
    corecore