101,101 research outputs found

    A distributed Real-Time Java system based on CSP

    Get PDF
    CSP is a fundamental concept for developing software for distributed real time systems. The CSP paradigm constitutes a natural addition to object orientation and offers higher order multithreading constructs. The CSP channel concept that has been implemented in Java deals with single- and multi-processor environments and also takes care of the real time priority scheduling requirements. For this, the notion of priority and scheduling has been carefully examined and as a result it was reasoned that priority scheduling should be attached to the communicating channels rather than to the processes. In association with channels, a priority based parallel construct is developed for composing processes: hiding threads and priority indexing from the user. This approach simplifies the use of priorities for the object oriented paradigm. Moreover, in the proposed system, the notion of scheduling is no longer connected to the operating system but has become part of the application instead

    Domain-oriented architecture design for production control software

    Get PDF
    this paper, we present domain-oriented architectural design heuristics for production control software. Our approach is based upon the following premisses. First, software design, like all other forms of design, consists of the reduction of uncertainty about a final product by making design decisions. These decisions should as much as possible be based upon information that is certain, either because they represent laws of nature or because they represent previously made design decisions. An import class of information concerns the domain of the software. The domain of control software is the part of the world monitored and controlled by the software; it is the larger system into which the software is embedded. The software engineer should exploit system-level domain knowledge in order to make software design decisions. Second, in the case of production control software, using system-level knowledge is not only justified, it is also imposed on the software engineer by the necessity to cooperate with hardware engineers. These represent their designs by means of Process and Instrumentation Diagrams (PIDs) and Input-Output (IO) lists. They do not want to spend time, nor do they see the need, to duplicate the information represented by these diagrams by means of diagrams from software engineering methods. Such a duplication would be an occasion to introduce errors of omission (information lost during the translation process) or commission (misinterpretation, misguided but invisible design decisions made during the translation) anyway. We think it is up to the software engineer to adapt his or her notations to those of the system engineers he or she must work with. Third, work in patterns and software architectures started from the programminglanguage level and is now moving..

    Challenging the Computational Metaphor: Implications for How We Think

    Get PDF
    This paper explores the role of the traditional computational metaphor in our thinking as computer scientists, its influence on epistemological styles, and its implications for our understanding of cognition. It proposes to replace the conventional metaphor--a sequence of steps--with the notion of a community of interacting entities, and examines the ramifications of such a shift on these various ways in which we think

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver
    • ā€¦
    corecore