955 research outputs found

    Institutional Cognition

    Get PDF
    We generalize a recent mathematical analysis of Bernard Baars' model of human consciousness to explore analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cogntivie modules, instantiating a Global Workspace. Human institutions, by contrast, seem able to multitask, supporting several such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Surprisingly, such multitasking, while clearly limiting the phenomenon of inattentional blindness, does not eliminate it. This suggests that organizations (or machines) explicitly designed along these principles, while highly efficient at certain sets of tasks, would still be subject to analogs of the subtle failure patterns explored in Wallace (2005b, 2006). We compare and contrast our results with recent work on collective efficacy and collective consciousness

    Machine Hyperconsciousness

    Get PDF
    Individual animal consciousness appears limited to a single giant component of interacting cognitive modules, instantiating a shifting, highly tunable, Global Workspace. Human institutions, by contrast, can support several, often many, such giant components simultaneously, although they generally function far more slowly than the minds of the individuals who compose them. Machines having multiple global workspaces -- hyperconscious machines -- should, however, be able to operate at the few hundred milliseconds characteistic of individual consciousness. Such multitasking -- machine or institutional -- while clearly limiting the phenomenon of inattentional blindness, does not eliminate it, and introduces characteristic failure modes involving the distortion of information sent between global workspaces. This suggests that machines explicitly designed along these principles, while highly efficient at certain sets of tasks, remain subject to canonical and idiosyncratic failure patterns analogous to, but more complicated than, those explored in Wallace (2006a). By contrast, institutions, facing similar challenges, are usually deeply embedded in a highly stabilizing cultural matrix of law, custom, and tradition which has evolved over many centuries. Parallel development of analogous engineering strategies, directed toward ensuring an 'ethical' device, would seem requisite to the sucessful application of any form of hyperconscious machine technology

    Biologically inspired distributed machine cognition: a new formal approach to hyperparallel computation

    Get PDF
    The irresistable march toward multiple-core chip technology presents currently intractable pdrogramming challenges. High level mental processes in many animals, and their analogs for social structures, appear similarly massively parallel, and recent mathematical models addressing them may be adaptable to the multi-core programming problem

    Institutional paraconsciousness and its pathologies

    Get PDF
    This analysis extends a recent mathematical treatment of the Baars consciousness model to analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cognitive modules, instantiating a Global Workspace. Human institutions, by contrast, support several, sometimes many, such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Such highly parallel multitasking - institutional paraconsciousness - while clearly limiting inattentional blindness and the consequences of failures within individual workspaces, does not eliminate them, and introduces new characteristic dysfunctions involving the distortion of information sent between global workspaces. Consequently, organizations (or machines designed along these principles), while highly efficient at certain kinds of tasks, remain subject to canonical and idiosyncratic failure patterns similar to, but more complicated than, those afflicting individuals. Remediation is complicated by the manner in which pathogenic externalities can write images of themselves on both institutional function and therapeutic intervention, in the context of relentless market selection pressures. The approach is broadly consonant with recent work on collective efficacy, collective consciousness, and distributed cognition

    Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network

    Full text link
    The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings ∈Rd\in \mathbb{R}^d and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, focusing primarily on producing rankings based on these measures, i.e. is vertex v1v_1 more central than vertex v2v_2 given centrality cc?. We then show that a GNN can be trained to develop a \emph{lingua franca} of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves 89%89\% accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained (n=128n=128). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176

    Darwin's Rainbow: Evolutionary radiation and the spectrum of consciousness

    Get PDF
    Evolution is littered with paraphyletic convergences: many roads lead to functional Romes. We propose here another example - an equivalence class structure factoring the broad realm of possible realizations of the Baars Global Workspace consciousness model. The construction suggests many different physiological systems can support rapidly shifting, sometimes highly tunable, temporary assemblages of interacting unconscious cognitive modules. The discovery implies various animal taxa exhibiting behaviors we broadly recognize as conscious are, in fact, simply expressing different forms of the same underlying phenomenon. Mathematically, we find much slower, and even multiple simultaneous, versions of the basic structure can operate over very long timescales, a kind of paraconsciousness often ascribed to group phenomena. The variety of possibilities, a veritable rainbow, suggests minds today may be only a small surviving fraction of ancient evolutionary radiations - bush phylogenies of consciousness and paraconsciousness. Under this scenario, the resulting diversity was subsequently pruned by selection and chance extinction. Though few traces of the radiation may be found in the direct fossil record, exaptations and vestiges are scattered across the living mind. Humans, for instance, display an uncommonly profound synergism between individual consciousness and their embedding cultural heritages, enabling efficient Lamarkian adaptation
    • …
    corecore