758 research outputs found

    Personalizing Interactions with Information Systems

    Get PDF
    Personalization constitutes the mechanisms and technologies necessary to customize information access to the end-user. It can be defined as the automatic adjustment of information content, structure, and presentation tailored to the individual. In this chapter, we study personalization from the viewpoint of personalizing interaction. The survey covers mechanisms for information-finding on the web, advanced information retrieval systems, dialog-based applications, and mobile access paradigms. Specific emphasis is placed on studying how users interact with an information system and how the system can encourage and foster interaction. This helps bring out the role of the personalization system as a facilitator which reconciles the user’s mental model with the underlying information system’s organization. Three tiers of personalization systems are presented, paying careful attention to interaction considerations. These tiers show how progressive levels of sophistication in interaction can be achieved. The chapter also surveys systems support technologies and niche application domains

    Pathway Projector: Web-Based Zoomable Pathway Browser Using KEGG Atlas and Google Maps API

    Get PDF
    BACKGROUND: Biochemical pathways provide an essential context for understanding comprehensive experimental data and the systematic workings of a cell. Therefore, the availability of online pathway browsers will facilitate post-genomic research, just as genome browsers have contributed to genomics. Many pathway maps have been provided online as part of public pathway databases. Most of these maps, however, function as the gateway interface to a specific database, and the comprehensiveness of their represented entities, data mapping capabilities, and user interfaces are not always sufficient for generic usage. METHODOLOGY/PRINCIPAL FINDINGS: We have identified five central requirements for a pathway browser: (1) availability of large integrated maps showing genes, enzymes, and metabolites; (2) comprehensive search features and data access; (3) data mapping for transcriptomic, proteomic, and metabolomic experiments, as well as the ability to edit and annotate pathway maps; (4) easy exchange of pathway data; and (5) intuitive user experience without the requirement for installation and regular maintenance. According to these requirements, we have evaluated existing pathway databases and tools and implemented a web-based pathway browser named Pathway Projector as a solution. CONCLUSIONS/SIGNIFICANCE: Pathway Projector provides integrated pathway maps that are based upon the KEGG Atlas, with the addition of nodes for genes and enzymes, and is implemented as a scalable, zoomable map utilizing the Google Maps API. Users can search pathway-related data using keywords, molecular weights, nucleotide sequences, and amino acid sequences, or as possible routes between compounds. In addition, experimental data from transcriptomic, proteomic, and metabolomic analyses can be readily mapped. Pathway Projector is freely available for academic users at (http://www.g-language.org/PathwayProjector/)

    User Interfaces for Personal Knowledge Management with Semantic Technologies

    Get PDF
    This thesis describes iMapping and QuiKey, two novel user interface concepts for dealing with structured information. iMapping is a visual knowledge mapping technique based on zooming, which combines the advantages of several existing approaches and scales up to very large maps. QuiKey is a text-based tool to interact with graph-structured knowledge bases with very high interaction efficiency. Both tools have been implemented and positively evaluated in user studies

    Interactive visualization of information hierarchies and applications on the web

    Get PDF
    The visualization of information hierarchies is concerned with the presentation of abstract hierarchical information about relationships between various entities. It has many applications in diverse domains such as software engineering, information systems, biology, and chemistry. Information hierarchies are typically modeled by an abstract tree, where vertices are entities and edges represent relationships between entities. The aim of visualizing tree drawings is to automatically produce drawings of trees which clearly reflect the relationships of the information hierarchy. This thesis is primarily concerned with problems related to the automatic generation of area-efficient grid drawings of trees, interactively visualizing information hierarchies, and applying our techniques on Web data. The main achievements of this thesis include: 1. An experimental study on algorithms that produce planar straight-line grid drawings of binary trees, 2. An experimental study that shows the algorithm for producing planar straight-line grid drawings of degree-d trees with n nodes with optimal linear area and with user-defined arbitrary aspect ratio, works well in practice, 3. A rings-based technique for interactively visualizing information hierarchies, in real-time, 4. A survey of Web visualization systems developed to address the lost in cyberspace problem, 5. A separation-based Web visualization system that we present as a viable solution to the lost in cyberspace problem, 6. A rings-based Web visualization system that we propose as a solution to the lost in cyberspace problem

    Query-Based Multicontexts for Knowledge Base Browsing

    Get PDF

    RUSHES—an annotation and retrieval engine for multimedia semantic units

    Get PDF
    Multimedia analysis and reuse of raw un-edited audio visual content known as rushes is gaining acceptance by a large number of research labs and companies. A set of research projects are considering multimedia indexing, annotation, search and retrieval in the context of European funded research, but only the FP6 project RUSHES is focusing on automatic semantic annotation, indexing and retrieval of raw and un-edited audio-visual content. Even professional content creators and providers as well as home-users are dealing with this type of content and therefore novel technologies for semantic search and retrieval are required. In this paper, we present a summary of the most relevant achievements of the RUSHES project, focusing on specific approaches for automatic annotation as well as the main features of the final RUSHES search engine
    corecore