2,328 research outputs found

    Context-aware Cluster Based Device-to-Device Communication to Serve Machine Type Communications

    Full text link
    Billions of Machine Type Communication (MTC) devices are foreseen to be deployed in next ten years and therefore potentially open a new market for next generation wireless network. However, MTC applications have different characteristics and requirements compared with the services provided by legacy cellular networks. For instance, an MTC device sporadically requires to transmit a small data packet containing information generated by sensors. At the same time, due to the massive deployment of MTC devices, it is inefficient to charge their batteries manually and thus a long battery life is required for MTC devices. In this sense, legacy networks designed to serve human-driven traffics in real time can not support MTC efficiently. In order to improve the availability and battery life of MTC devices, context-aware device-to-device (D2D) communication is exploited in this paper. By applying D2D communication, some MTC users can serve as relays for other MTC users who experience bad channel conditions. Moreover, signaling schemes are also designed to enable the collection of context information and support the proposed D2D communication scheme. Last but not least, a system level simulator is implemented to evaluate the system performance of the proposed technologies and a large performance gain is shown by the numerical results

    Self organization of tilts in relay enhanced networks: a distributed solution

    Get PDF
    Despite years of physical-layer research, the capacity enhancement potential of relays is limited by the additional spectrum required for Base Station (BS)-Relay Station (RS) links. This paper presents a novel distributed solution by exploiting a system level perspective instead. Building on a realistic system model with impromptu RS deployments, we develop an analytical framework for tilt optimization that can dynamically maximize spectral efficiency of both the BS-RS and BS-user links in an online manner. To obtain a distributed self-organizing solution, the large scale system-wide optimization problem is decomposed into local small scale subproblems by applying the design principles of self-organization in biological systems. The local subproblems are non-convex, but having a very small scale, can be solved via standard nonlinear optimization techniques such as sequential quadratic programming. The performance of the developed solution is evaluated through extensive simulations for an LTE-A type system and compared against a number of benchmarks including a centralized solution obtained via brute force, that also gives an upper bound to assess the optimality gap. Results show that the proposed solution can enhance average spectral efficiency by up to 50% compared to fixed tilting, with negligible signaling overheads. The key advantage of the proposed solution is its potential for autonomous and distributed implementation

    Simplicial Homology for Future Cellular Networks

    Get PDF
    Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topology of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes
    • …
    corecore