2,368 research outputs found

    Generalized Boosting Algorithms for Convex Optimization

    Full text link
    Boosting is a popular way to derive powerful learners from simpler hypothesis classes. Following previous work (Mason et al., 1999; Friedman, 2000) on general boosting frameworks, we analyze gradient-based descent algorithms for boosting with respect to any convex objective and introduce a new measure of weak learner performance into this setting which generalizes existing work. We present the weak to strong learning guarantees for the existing gradient boosting work for strongly-smooth, strongly-convex objectives under this new measure of performance, and also demonstrate that this work fails for non-smooth objectives. To address this issue, we present new algorithms which extend this boosting approach to arbitrary convex loss functions and give corresponding weak to strong convergence results. In addition, we demonstrate experimental results that support our analysis and demonstrate the need for the new algorithms we present.Comment: Extended version of paper presented at the International Conference on Machine Learning, 2011. 9 pages + appendix with proof

    A Primal-Dual Convergence Analysis of Boosting

    Full text link
    Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high entropy distribution upon which weak learners and training labels are uncorrelated. This manuscript studies this primal-dual relationship under a broad family of losses, including the exponential loss of AdaBoost and the logistic loss, revealing: - Weak learnability aids the whole loss family: for any {\epsilon}>0, O(ln(1/{\epsilon})) iterations suffice to produce a predictor with empirical risk {\epsilon}-close to the infimum; - The circumstances granting the existence of an empirical risk minimizer may be characterized in terms of the primal and dual problems, yielding a new proof of the known rate O(ln(1/{\epsilon})); - Arbitrary instances may be decomposed into the above two, granting rate O(1/{\epsilon}), with a matching lower bound provided for the logistic loss.Comment: 40 pages, 8 figures; the NIPS 2011 submission "The Fast Convergence of Boosting" is a brief presentation of the primary results; compared with the JMLR version, this arXiv version has hyperref and some formatting tweak

    GGL-PPI: Geometric Graph Learning to Predict Mutation-Induced Binding Free Energy Changes

    Full text link
    Protein-protein interactions (PPIs) are critical for various biological processes, and understanding their dynamics is essential for decoding molecular mechanisms and advancing fields such as cancer research and drug discovery. Mutations in PPIs can disrupt protein binding affinity and lead to functional changes and disease. Predicting the impact of mutations on binding affinity is valuable but experimentally challenging. Computational methods, including physics-based and machine learning-based approaches, have been developed to address this challenge. Machine learning-based methods, fueled by extensive PPI datasets such as Ab-Bind, PINT, SKEMPI, and others, have shown promise in predicting binding affinity changes. However, accurate predictions and generalization of these models across different datasets remain challenging. Geometric graph learning has emerged as a powerful approach, combining graph theory and machine learning, to capture structural features of biomolecules. We present GGL-PPI, a novel method that integrates geometric graph learning and machine learning to predict mutation-induced binding free energy changes. GGL-PPI leverages atom-level graph coloring and multi-scale weighted colored geometric subgraphs to extract informative features, demonstrating superior performance on three validation datasets, namely AB-Bind, SKEMPI 1.0, and SKEMPI 2.0 datasets. Evaluation on a blind test set highlights the unbiased predictions of GGL-PPI for both direct and reverse mutations. The findings underscore the potential of GGL-PPI in accurately predicting binding free energy changes, contributing to our understanding of PPIs and aiding drug design efforts

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities
    • …
    corecore