4,481 research outputs found

    A Survey on Multi-View Clustering

    Full text link
    With advances in information acquisition technologies, multi-view data become ubiquitous. Multi-view learning has thus become more and more popular in machine learning and data mining fields. Multi-view unsupervised or semi-supervised learning, such as co-training, co-regularization has gained considerable attention. Although recently, multi-view clustering (MVC) methods have been developed rapidly, there has not been a survey to summarize and analyze the current progress. Therefore, this paper reviews the common strategies for combining multiple views of data and based on this summary we propose a novel taxonomy of the MVC approaches. We further discuss the relationships between MVC and multi-view representation, ensemble clustering, multi-task clustering, multi-view supervised and semi-supervised learning. Several representative real-world applications are elaborated. To promote future development of MVC, we envision several open problems that may require further investigation and thorough examination.Comment: 17 pages, 4 figure

    A review of heterogeneous data mining for brain disorders

    Full text link
    With rapid advances in neuroimaging techniques, the research on brain disorder identification has become an emerging area in the data mining community. Brain disorder data poses many unique challenges for data mining research. For example, the raw data generated by neuroimaging experiments is in tensor representations, with typical characteristics of high dimensionality, structural complexity and nonlinear separability. Furthermore, brain connectivity networks can be constructed from the tensor data, embedding subtle interactions between brain regions. Other clinical measures are usually available reflecting the disease status from different perspectives. It is expected that integrating complementary information in the tensor data and the brain network data, and incorporating other clinical parameters will be potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Many research efforts have been devoted to this area. They have achieved great success in various applications, such as tensor-based modeling, subgraph pattern mining, multi-view feature analysis. In this paper, we review some recent data mining methods that are used for analyzing brain disorders

    A feature construction framework based on outlier detection and discriminative pattern mining

    Full text link
    No matter the expressive power and sophistication of supervised learning algorithms, their effectiveness is restricted by the features describing the data. This is not a new insight in ML and many methods for feature selection, transformation, and construction have been developed. But while this is on-going for general techniques for feature selection and transformation, i.e. dimensionality reduction, work on feature construction, i.e. enriching the data, is by now mainly the domain of image, particularly character, recognition, and NLP. In this work, we propose a new general framework for feature construction. The need for feature construction in a data set is indicated by class outliers and discriminative pattern mining used to derive features on their k-neighborhoods. We instantiate the framework with LOF and C4.5-Rules, and evaluate the usefulness of the derived features on a diverse collection of UCI data sets. The derived features are more often useful than ones derived by DC-Fringe, and our approach is much less likely to overfit. But while a weak learner, Naive Bayes, benefits strongly from the feature construction, the effect is less pronounced for C4.5, and almost vanishes for an SVM leaner. Keywords: feature construction, classification, outlier detectio

    Discriminative Subnetworks with Regularized Spectral Learning for Global-state Network Data

    Full text link
    Data mining practitioners are facing challenges from data with network structure. In this paper, we address a specific class of global-state networks which comprises of a set of network instances sharing a similar structure yet having different values at local nodes. Each instance is associated with a global state which indicates the occurrence of an event. The objective is to uncover a small set of discriminative subnetworks that can optimally classify global network values. Unlike most existing studies which explore an exponential subnetwork space, we address this difficult problem by adopting a space transformation approach. Specifically, we present an algorithm that optimizes a constrained dual-objective function to learn a low-dimensional subspace that is capable of discriminating networks labelled by different global states, while reconciling with common network topology sharing across instances. Our algorithm takes an appealing approach from spectral graph learning and we show that the globally optimum solution can be achieved via matrix eigen-decomposition.Comment: manuscript for the ECML 2014 pape

    Association Analysis Techniques for Bioinformatics Problems

    Get PDF
    Abstract. Association analysis is one of the most popular analysis paradigms in data mining. Despite the solid foundation of association analysis and its potential applications, this group of techniques is not as widely used as classification and clustering, especially in the domain of bioinformatics and computational biology. In this paper, we present different types of association patterns and discuss some of their applications in bioinformatics. We present a case study showing the usefulness of association analysis-based techniques for pre-processing protein interaction networks for the task of protein function prediction. Finally, we discuss some of the challenges that need to be addressed to make association analysis-based techniques more applicable for a number of interesting problems in bioinformatics

    Feature Selection: A Data Perspective

    Full text link
    Feature selection, as a data preprocessing strategy, has been proven to be effective and efficient in preparing data (especially high-dimensional data) for various data mining and machine learning problems. The objectives of feature selection include: building simpler and more comprehensible models, improving data mining performance, and preparing clean, understandable data. The recent proliferation of big data has presented some substantial challenges and opportunities to feature selection. In this survey, we provide a comprehensive and structured overview of recent advances in feature selection research. Motivated by current challenges and opportunities in the era of big data, we revisit feature selection research from a data perspective and review representative feature selection algorithms for conventional data, structured data, heterogeneous data and streaming data. Methodologically, to emphasize the differences and similarities of most existing feature selection algorithms for conventional data, we categorize them into four main groups: similarity based, information theoretical based, sparse learning based and statistical based methods. To facilitate and promote the research in this community, we also present an open-source feature selection repository that consists of most of the popular feature selection algorithms (\url{http://featureselection.asu.edu/}). Also, we use it as an example to show how to evaluate feature selection algorithms. At the end of the survey, we present a discussion about some open problems and challenges that require more attention in future research

    Salient Object Detection: A Distinctive Feature Integration Model

    Full text link
    We propose a novel method for salient object detection in different images. Our method integrates spatial features for efficient and robust representation to capture meaningful information about the salient objects. We then train a conditional random field (CRF) using the integrated features. The trained CRF model is then used to detect salient objects during the online testing stage. We perform experiments on two standard datasets and compare the performance of our method with different reference methods. Our experiments show that our method outperforms the compared methods in terms of precision, recall, and F-Measure

    Combining complex networks and data mining: why and how

    Full text link
    The increasing power of computer technology does not dispense with the need to extract meaningful in- formation out of data sets of ever growing size, and indeed typically exacerbates the complexity of this task. To tackle this general problem, two methods have emerged, at chronologically different times, that are now commonly used in the scientific community: data mining and complex network theory. Not only do complex network analysis and data mining share the same general goal, that of extracting information from complex systems to ultimately create a new compact quantifiable representation, but they also often address similar problems too. In the face of that, a surprisingly low number of researchers turn out to resort to both methodologies. One may then be tempted to conclude that these two fields are either largely redundant or totally antithetic. The starting point of this review is that this state of affairs should be put down to contingent rather than conceptual differences, and that these two fields can in fact advantageously be used in a synergistic manner. An overview of both fields is first provided, some fundamental concepts of which are illustrated. A variety of contexts in which complex network theory and data mining have been used in a synergistic manner are then presented. Contexts in which the appropriate integration of complex network metrics can lead to improved classification rates with respect to classical data mining algorithms and, conversely, contexts in which data mining can be used to tackle important issues in complex network theory applications are illustrated. Finally, ways to achieve a tighter integration between complex networks and data mining, and open lines of research are discussed.Comment: 58 pages, 19 figure

    Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags

    Full text link
    Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization and medical diagnosis. Most of the previous work for MIL assume that the training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU learning (positive and unlabeled learning) can address this problem. In this paper, we propose a convex PU learning method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computational costs than an existing method for PU-MIL

    Scalable Prototype Selection by Genetic Algorithms and Hashing

    Full text link
    Classification in the dissimilarity space has become a very active research area since it provides a possibility to learn from data given in the form of pairwise non-metric dissimilarities, which otherwise would be difficult to cope with. The selection of prototypes is a key step for the further creation of the space. However, despite previous efforts to find good prototypes, how to select the best representation set remains an open issue. In this paper we proposed scalable methods to select the set of prototypes out of very large datasets. The methods are based on genetic algorithms, dissimilarity-based hashing, and two different unsupervised and supervised scalable criteria. The unsupervised criterion is based on the Minimum Spanning Tree of the graph created by the prototypes as nodes and the dissimilarities as edges. The supervised criterion is based on counting matching labels of objects and their closest prototypes. The suitability of these type of algorithms is analyzed for the specific case of dissimilarity representations. The experimental results showed that the methods select good prototypes taking advantage of the large datasets, and they do so at low runtimes.Comment: 26 pages, 8 figure
    • …
    corecore