3 research outputs found

    Histological validation of the brain cell body imaging with diffusion MRI at ultrahigh field

    Get PDF
    Biophysical modelling of diffusion-weighted MRI (DW-MRI) data can help to gain more insight into brain microstructure. However, models need to be validated. This work validates a recently-developed technique for non-invasive mapping of brain cell-body (soma) size/ density with DW-MRI, by using ultrahigh-field DW-MRI experiments and histology of mouse brain. Predictions from numerical simulations are experimentally confirmed and brain’s maps of MR-measured soma size/density are shown to correspond very well with histology. We provide differential contrasts between cell layers that are less expressed in tensor analyses, leading to novel complementary contrasts of the brain tissue. Limitations and future research directions are discussed

    Histological validation of the brain cell body imaging with diffusion MRI at ultrahigh field

    Get PDF
    Biophysical modelling of diffusion-weighted MRI (DW-MRI) data can help to gain more insight into brain microstructure. However, models need to be validated. This work validates a recently-developed technique for non-invasive mapping of brain cell-body (soma) size/ density with DW-MRI, by using ultrahigh-field DW-MRI experiments and histology of mouse brain. Predictions from numerical simulations are experimentally confirmed and brain’s maps of MR-measured soma size/density are shown to correspond very well with histology. We provide differential contrasts between cell layers that are less expressed in tensor analyses, leading to novel complementary contrasts of the brain tissue. Limitations and future research directions are discussed

    ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation

    Get PDF
    This paper presents Contextual Fibre Growth (ConFiG), an approach to generate white matter numerical phantoms by mimicking natural fibre genesis. ConFiG grows fibres one-by-one, following simple rules motivated by real axonal guidance mechanisms. These simple rules enable ConFiG to generate phantoms with tuneable microstructural features by growing fibres while attempting to meet morphological targets such as user-specified density and orientation distribution. We compare ConFiG to the state-of-the-art approach based on packing fibres together by generating phantoms in a range of fibre configurations including crossing fibre bundles and orientation dispersion. Results demonstrate that ConFiG produces phantoms with up to 20% higher densities than the state-of-the-art, particularly in complex configurations with crossing fibres. We additionally show that the microstructural morphology of ConFiG phantoms is comparable to real tissue, producing diameter and orientation distributions close to electron microscopy estimates from real tissue as well as capturing complex fibre cross sections. Signals simulated from ConFiG phantoms match real diffusion MRI data well, showing that ConFiG phantoms can be used to generate realistic diffusion MRI data. This demonstrates the feasibility of ConFiG to generate realistic synthetic diffusion MRI data for developing and validating microstructure modelling approaches
    corecore