16,815 research outputs found

    High frequency homogenisation for elastic lattices

    Full text link
    A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented by a pair of illustrative examples for two archetypal classes of two-dimensional elastic lattices. The efficiency of the asymptotic approach in accurately describing several interesting phenomena is demonstrated, including dynamic anisotropy and Dirac cones.Comment: 24 pages, 7 figure

    On Fields with Finite Information Density

    Full text link
    The existence of a natural ultraviolet cutoff at the Planck scale is widely expected. In a previous Letter, it has been proposed to model this cutoff as an information density bound by utilizing suitably generalized methods from the mathematical theory of communication. Here, we prove the mathematical conjectures that were made in this Letter.Comment: 31 pages, to appear in Phys.Rev.

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    Effects of geometric anisotropy on local field distribution: Ewald-Kornfeld formulation

    Full text link
    We have applied the Ewald-Kornfeld formulation to a tetragonal lattice of point dipoles, in an attempt to examine the effects of geometric anisotropy on the local field distribution. The various problems encountered in the computation of the conditionally convergent summation of the near field are addressed and the methods of overcoming them are discussed. The results show that the geometric anisotropy has a significant impact on the local field distribution. The change in the local field can lead to a generalized Clausius-Mossotti equation for the anisotropic case.Comment: Accepted for publications, Journal of Physics: Condensed Matte

    Discretization Errors and Rotational Symmetry: The Laplacian Operator on Non-Hypercubical Lattices

    Get PDF
    Discretizations of the Laplacian operator on non-hypercubical lattices are discussed in a systematic approach. It is shown that order a2a^2 errors always exist for discretizations involving only nearest neighbors. Among all lattices with the same density of lattice sites, the hypercubical lattices always have errors smaller than other lattices with the same number of spacetime dimensions. On the other hand, the four dimensional checkerboard lattice (also known as the Celmaster lattice) is the only lattice which is isotropic at order a2a^2. Explicit forms of the discretized Laplacian operators on root lattices are presented, and different ways of eliminating order a2a^2 errors are discussed.Comment: 30 pages in REVTe
    • …
    corecore