6 research outputs found

    Voter verifiability in homomorphic election schemes

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (leaves 61-64).Voters are now demanding the ability to verify that their votes are cast and counted as intended. Most existing cryptographic election protocols do not treat the voter as a computationally-limited entity separate from the voting booth, and therefore do not ensure that the voting booth records the correct vote. David Chaum and Andrew Neff have proposed mixnet schemes that do provide this assurance, but little research has been done that combines voter verification with homomorphic encryption. This thesis proposes adding voter verification to an existing multi-candidate election scheme (Baudron et al.) that uses Paillier encryption. A "cut and choose" protocol provides a probabilistic guarantee of correctness. The scheme is straightforward, and could easily be extended to multi-authority elections. The feasibility of the proposed scheme is demonstrated via a simple implementation.by Joy Marie Forsythe.M.Eng

    Enhanced fully homomorphic encryption scheme using modified key generation for cloud environment

    Get PDF
    Fully homomorphic encryption (FHE) is a special class of encryption that allows performing unlimited mathematical operations on encrypted data without decrypting it. There are symmetric and asymmetric FHE schemes. The symmetric schemes suffer from the semantically security property and need more performance improvements. While asymmetric schemes are semantically secure however, they pose two implicit problems. The first problem is related to the size of key and ciphertext and the second problem is the efficiency of the schemes. This study aims to reduce the execution time of the symmetric FHE scheme by enhancing the key generation algorithm using the Pick-Test method. As such, the Binary Learning with Error lattice is used to solve the key and ciphertext size problems of the asymmetric FHE scheme. The combination of enhanced symmetric and asymmetric algorithms is used to construct a multi-party protocol that allows many users to access and manipulate the data in the cloud environment. The Pick-Test method of the Sym-Key algorithm calculates the matrix inverse and determinant in one instance requires only n-1 extra multiplication for the calculation of determinant which takes 0(N3) as a total cost, while the Random method in the standard scheme takes 0(N3) to find matrix inverse and 0(N!) to calculate the determinant which results in 0(N4) as a total cost. Furthermore, the implementation results show that the proposed key generation algorithm based on the pick-test method could be used as an alternative to improve the performance of the standard FHE scheme. The secret key in the Binary-LWE FHE scheme is selected from {0,1}n to obtain a minimal key and ciphertext size, while the public key is based on learning with error problem. As a result, the secret key, public key and tensored ciphertext is enhanced from logq , 0(n2log2q) and ((n+1)n2log2q)2log q to n, (n+1)2log q and (n+1)2log q respectively. The Binary-LWE FHE scheme is a secured but noise-based scheme. Hence, the modulus switching technique is used as a noise management technique to scale down the noise from e and c to e/B and c/B respectively thus, the total cost for noise management is enhanced from 0(n3log2q) to 0(n2log q) . The Multi-party protocol is constructed to support the cloud computing on Sym-Key FHE scheme. The asymmetric Binary-LWE FHE scheme is used as a small part of the protocol to verify the access of users to any resource. Hence, the protocol combines both symmetric and asymmetric FHE schemes which have the advantages of efficiency and security. FHE is a new approach with a bright future in cloud computing

    Design and implementation of an online anonymous feedback system

    Get PDF
    Society has long seen anonymity in many forms such as suggestion boxes, unsigned letters and blocked calls. In the online world, the protection of users' anonymity, when performing some online transactions, is an important factor in the acceptance and use of several Internet and web services. Solutions for minimizing release of personal information can be based on many proposed cryptographic techniques for providing anonymity. In this thesis, we describe the design and implementation of an online feedback system employing an anonymous authentication mechanism based on blind RSA signature scheme. The proposed system prevents malicious evaluators from assuming multiple identities. It also maintains the anonymity of the evaluator even against an abusive authority that has access to the evaluation servers. Based on our design, the authority, responsible for the evaluation process, can be held accountable if it blocks any user's feedback. The system also prevents malicious evaluators from sending multiple evaluations for the same evaluatee. Finally, the developed system is generic enough, user friendly and allows the administrator to change the evaluation form to fit the assessment of essentially any type of function or performanc

    Secure multi party computations for electronic voting

    Get PDF
    Στην παρούσα εργασία, μελετούμε το πρόβλημα της ηλεκτρονικής ψηφοφορίας. Θεωρούμε ότι είναι έκφανση μιας γενικής διαδικασίας αποφάσεων που μπορεί να υλοποιηθεί μέσω υπολογισμών πολλαπλών οντοτήτων, οι οποίοι πρέπει να ικανοποιούν πολλές και αντικρουόμενες απαιτήσεις ασφαλείας. Έτσι μελετούμε σχετικές προσεγγίσεις οι οποίες βασιζονται σε κρυπτογραφικές τεχνικές, όπως τα ομομορφικά κρυπτοσυστήματα, τα δίκτυα μίξης και οι τυφλές υπογραφές. Αναλύουμε πώς προσφέρουν ακεραιότητα και ιδιωτικότητα (μυστικότητα) στην διαδικασία και την σχέση τους με την αποδοτικότητα. Εξετάζουμε τα είδη λειτουργιών κοινωνικής επιλογής που μπορούν να υποστηρίξουν και παρέχουμε δύο υλοποιήσεις. Επιπλέον ασχολούμαστε με την αντιμετώπιση ισχυρότερων αντιπάλων μη παρέχοντας αποδείξεις ψήφου ή προσφέροντας δυνατότητες αντίστασης στον εξαναγκασμό. Με βάση την τελευταία έννοια προτείνουμε μια τροποποίηση σε ένα ευρέως χρησιμοποιούμενο πρωτόκολλο. Τέλος μελετούμε δύο γνωστές υλοποιήσεις συστημάτων ηλεκτρονικής ψηφοφοριας το Helios και το Pret a Voter .In this thesis, we study the problem of electronic voting as a general decision making process that can be implemented using multi party computations, fulfilling strict and often conflicting security requirements. To this end, we review relevant cryptographic techniques and their combinations to form voting protocols. More specifically, we analyze schemes based on homomorphic cryptosystems, mixnets with proofs of shuffles and blind signatures. We analyze how they achieve integrity and privacy in the voting process, while keeping efficiency. We examine the types of social choice functions that can be supported by each protocol. We provide two proof of concept implementations. Moreover, we review ways to thwart stronger adversaries by adding receipt freeness and coercion resistance to voting systems. We build on the latter concept to propose a modification to a well known protocol. Finally, we study two actual e-Voting implementations namely Helios and Pret a Voter

    Towards Sustainable Blockchains:Cryptocurrency Treasury and General Decision-making Systems with Provably Secure Delegable Blockchain-based Voting

    Get PDF
    The blockchain technology and cryptocurrencies, its most prevalent application, continue to gain acceptance and wide traction in research and practice within academia and the industry because of its promise in decentralised and distributed computing. Notably, the meteoric rise in the value and number of cryptocurrencies since the creation of Bitcoin in 2009 have ushered in newer innovations and interventions that addressed some of the prominent issues that affect these platforms. Despite the increased privacy, security, scalability, and energy-saving capabilities of new consensus protocols in newer systems, the development and management of blockchains, mostly, do not reflect the decentralisation principle despite blockchains being decentralised and distributed in their architecture. The concept of treasury has been identified as a tool to address this problem. We explore the idea of blockchain treasury systems within literature and practice, especially with relation to funding and decision-making power towards blockchain development and maintenance. Consequently, we propose a taxonomy for treasury models within cryptocurrencies. Thereafter, we propose an efficient community-controlled and decentralised collaborative decision-making mechanism to support the development and management of blockchains. Our proposed system incentivises participants and is proven secure under the universally composable (UC) framework while also addressing gaps identified from our investigation of prior systems e.g. non-private ballots and insecure voting. Furthermore, we adapt our system and propose a privacy-preserving general decision making system for blockchain governance that supports privacy-centric cryptocurrencies. Besides, using a set of metrics, we introduce a consensus analysis mechanism to enhance the utility of decision-making of the systems by evaluating individual choices against collective (system-wide) decisions. Finally, we provide pilot system implementations with benchmark results confirming the efficiency and practicality of our constructions

    Advances in cryptographic voting systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 241-254).Democracy depends on the proper administration of popular elections. Voters should receive assurance that their intent was correctly captured and that all eligible votes were correctly tallied. The election system as a whole should ensure that voter coercion is unlikely, even when voters are willing to be influenced. These conflicting requirements present a significant challenge: how can voters receive enough assurance to trust the election result, but not so much that they can prove to a potential coercer how they voted? This dissertation explores cryptographic techniques for implementing verifiable, secret-ballot elections. We present the power of cryptographic voting, in particular its ability to successfully achieve both verifiability and ballot secrecy, a combination that cannot be achieved by other means. We review a large portion of the literature on cryptographic voting. We propose three novel technical ideas: 1. a simple and inexpensive paper-base cryptographic voting system with some interesting advantages over existing techniques, 2. a theoretical model of incoercibility for human voters with their inherent limited computational ability, and a new ballot casting system that fits the new definition, and 3. a new theoretical construct for shuffling encrypted votes in full view of public observers.by Ben Adida.Ph.D
    corecore