41,244 research outputs found

    A General Upper Bound on the Size of Constant-Weight Conflict-Avoiding Codes

    Full text link
    Conflict-avoiding codes are used in the multiple-access collision channel without feedback. The number of codewords in a conflict-avoiding code is the number of potential users that can be supported in the system. In this paper, a new upper bound on the size of conflict-avoiding codes is proved. This upper bound is general in the sense that it is applicable to all code lengths and all Hamming weights. Several existing constructions for conflict-avoiding codes, which are known to be optimal for Hamming weights equal to four and five, are shown to be optimal for all Hamming weights in general.Comment: 10 pages, 1 figur

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    Approximate generalized Steiner systems and near-optimal constant weight codes

    Full text link
    Constant weight codes (CWCs) and constant composition codes (CCCs) are two important classes of codes that have been studied extensively in both combinatorics and coding theory for nearly sixty years. In this paper we show that for {\it all} fixed odd distances, there exist near-optimal CWCs and CCCs asymptotically achieving the classic Johnson-type upper bounds. Let Aq(n,w,d)A_q(n,w,d) denote the maximum size of qq-ary CWCs of length nn with constant weight ww and minimum distance dd. One of our main results shows that for {\it all} fixed q,wq,w and odd dd, one has limnAq(n,d,w)(nt)=(q1)t(wt)\lim_{n\rightarrow\infty}\frac{A_q(n,d,w)}{\binom{n}{t}}=\frac{(q-1)^t}{\binom{w}{t}}, where t=2wd+12t=\frac{2w-d+1}{2}. This implies the existence of near-optimal generalized Steiner systems originally introduced by Etzion, and can be viewed as a counterpart of a celebrated result of R\"odl on the existence of near-optimal Steiner systems. Note that prior to our work, very little is known about Aq(n,w,d)A_q(n,w,d) for q3q\ge 3. A similar result is proved for the maximum size of CCCs. We provide different proofs for our two main results, based on two strengthenings of the well-known Frankl-R\"odl-Pippenger theorem on the existence of near-optimal matchings in hypergraphs: the first proof follows by Kahn's linear programming variation of the above theorem, and the second follows by the recent independent work of Delcour-Postle, and Glock-Joos-Kim-K\"uhn-Lichev on the existence of near-optimal matchings avoiding certain forbidden configurations. We also present several intriguing open questions for future research.Comment: 15 pages, introduction revise

    A new generation 99 line Matlab code for compliance Topology Optimization and its extension to 3D

    Full text link
    Compact and efficient Matlab implementations of compliance Topology Optimization (TO) for 2D and 3D continua are given, consisting of 99 and 125 lines respectively. On discretizations ranging from 31043\cdot 10^{4} to 4.81054.8\cdot10^{5} elements, the 2D version, named top99neo, shows speedups from 2.55 to 5.5 times compared to the well-known top88 code (Andreassen-etal 2011). The 3D version, named top3D125, is the most compact and efficient Matlab implementation for 3D TO to date, showing a speedup of 1.9 times compared to the code of Amir-etal 2014, on a discretization with 2.21052.2\cdot10^{5} elements. For both codes, improvements are due to much more efficient procedures for the assembly and implementation of filters and shortcuts in the design update step. The use of an acceleration strategy, yielding major cuts in the overall computational time, is also discussed, stressing its easy integration within the basic codes.Comment: 17 pages, 8 Figures, 4 Table
    corecore