24,995 research outputs found
Sampling-Based Temporal Logic Path Planning
In this paper, we propose a sampling-based motion planning algorithm that
finds an infinite path satisfying a Linear Temporal Logic (LTL) formula over a
set of properties satisfied by some regions in a given environment. The
algorithm has three main features. First, it is incremental, in the sense that
the procedure for finding a satisfying path at each iteration scales only with
the number of new samples generated at that iteration. Second, the underlying
graph is sparse, which guarantees the low complexity of the overall method.
Third, it is probabilistically complete. Examples illustrating the usefulness
and the performance of the method are included.Comment: 8 pages, 4 figures; extended version of the paper presented at IROS
201
The Critical Radius in Sampling-based Motion Planning
We develop a new analysis of sampling-based motion planning in Euclidean
space with uniform random sampling, which significantly improves upon the
celebrated result of Karaman and Frazzoli (2011) and subsequent work.
Particularly, we prove the existence of a critical connection radius
proportional to for samples and dimensions:
Below this value the planner is guaranteed to fail (similarly shown by the
aforementioned work, ibid.). More importantly, for larger radius values the
planner is asymptotically (near-)optimal. Furthermore, our analysis yields an
explicit lower bound of on the probability of success. A
practical implication of our work is that asymptotic (near-)optimality is
achieved when each sample is connected to only neighbors. This is
in stark contrast to previous work which requires
connections, that are induced by a radius of order . Our analysis is not restricted to PRM and applies to a
variety of PRM-based planners, including RRG, FMT* and BTT. Continuum
percolation plays an important role in our proofs. Lastly, we develop similar
theory for all the aforementioned planners when constructed with deterministic
samples, which are then sparsified in a randomized fashion. We believe that
this new model, and its analysis, is interesting in its own right
Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations
In this work, we apply stochastic collocation methods with radial kernel
basis functions for an uncertainty quantification of the random incompressible
two-phase Navier-Stokes equations. Our approach is non-intrusive and we use the
existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase
Navier-Stokes equation for each given realization. We are able to empirically
show that the resulting kernel-based stochastic collocation is highly
competitive in this setting and even outperforms some other standard methods
Simple Obstacle Avoidance Algorithm for Rehabilitation Robots
The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm for obstacle avoidance was developed. The algorithm derives a collision free path of the end-effector of the robot around known obstacles to the target location in O(n) time. In a case study, using the rehabilitation robot ARM, the performance of the algorithm was tested. As was a newly human-machine-interface offering this record-and-replay functionality to the use
- …
