24,995 research outputs found

    Sampling-Based Temporal Logic Path Planning

    Full text link
    In this paper, we propose a sampling-based motion planning algorithm that finds an infinite path satisfying a Linear Temporal Logic (LTL) formula over a set of properties satisfied by some regions in a given environment. The algorithm has three main features. First, it is incremental, in the sense that the procedure for finding a satisfying path at each iteration scales only with the number of new samples generated at that iteration. Second, the underlying graph is sparse, which guarantees the low complexity of the overall method. Third, it is probabilistically complete. Examples illustrating the usefulness and the performance of the method are included.Comment: 8 pages, 4 figures; extended version of the paper presented at IROS 201

    The Critical Radius in Sampling-based Motion Planning

    Full text link
    We develop a new analysis of sampling-based motion planning in Euclidean space with uniform random sampling, which significantly improves upon the celebrated result of Karaman and Frazzoli (2011) and subsequent work. Particularly, we prove the existence of a critical connection radius proportional to Θ(n1/d){\Theta(n^{-1/d})} for nn samples and d{d} dimensions: Below this value the planner is guaranteed to fail (similarly shown by the aforementioned work, ibid.). More importantly, for larger radius values the planner is asymptotically (near-)optimal. Furthermore, our analysis yields an explicit lower bound of 1O(n1){1-O( n^{-1})} on the probability of success. A practical implication of our work is that asymptotic (near-)optimality is achieved when each sample is connected to only Θ(1){\Theta(1)} neighbors. This is in stark contrast to previous work which requires Θ(logn){\Theta(\log n)} connections, that are induced by a radius of order (lognn)1/d{\left(\frac{\log n}{n}\right)^{1/d}}. Our analysis is not restricted to PRM and applies to a variety of PRM-based planners, including RRG, FMT* and BTT. Continuum percolation plays an important role in our proofs. Lastly, we develop similar theory for all the aforementioned planners when constructed with deterministic samples, which are then sparsified in a randomized fashion. We believe that this new model, and its analysis, is interesting in its own right

    Kernel-based stochastic collocation for the random two-phase Navier-Stokes equations

    Full text link
    In this work, we apply stochastic collocation methods with radial kernel basis functions for an uncertainty quantification of the random incompressible two-phase Navier-Stokes equations. Our approach is non-intrusive and we use the existing fluid dynamics solver NaSt3DGPF to solve the incompressible two-phase Navier-Stokes equation for each given realization. We are able to empirically show that the resulting kernel-based stochastic collocation is highly competitive in this setting and even outperforms some other standard methods

    Simple Obstacle Avoidance Algorithm for Rehabilitation Robots

    Get PDF
    The efficiency of a rehabilitation robot is improved by offering record-and-replay to operate the robot. While automatically moving to a stored target (replay) collisions of the robot with obstacles in its work space must be avoided. A simple, though effective, generic and deterministic algorithm for obstacle avoidance was developed. The algorithm derives a collision free path of the end-effector of the robot around known obstacles to the target location in O(n) time. In a case study, using the rehabilitation robot ARM, the performance of the algorithm was tested. As was a newly human-machine-interface offering this record-and-replay functionality to the use
    corecore