105 research outputs found

    Green Communication via Power-optimized HARQ Protocols

    Get PDF
    Recently, efficient use of energy has become an essential research topic for green communication. This paper studies the effect of optimal power controllers on the performance of delay-sensitive communication setups utilizing hybrid automatic repeat request (HARQ). The results are obtained for repetition time diversity (RTD) and incremental redundancy (INR) HARQ protocols. In all cases, the optimal power allocation, minimizing the outage-limited average transmission power, is obtained under both continuous and bursting communication models. Also, we investigate the system throughput in different conditions. The results indicate that the power efficiency is increased substantially, if adaptive power allocation is utilized. For instance, assume Rayleigh-fading channel, a maximum of two (re)transmission rounds with rates {1,12}\{1,\frac{1}{2}\} nats-per-channel-use and an outage probability constraint 10−3{10}^{-3}. Then, compared to uniform power allocation, optimal power allocation in RTD reduces the average power by 9 and 11 dB in the bursting and continuous communication models, respectively. In INR, these values are obtained to be 8 and 9 dB, respectively.Comment: Accepted for publication on IEEE Transactions on Vehicular Technolog

    Outage-based ergodic link adaptation for fading channels with delayed CSIT

    Full text link
    Link adaptation in which the transmission data rate is dynamically adjusted according to channel variation is often used to deal with time-varying nature of wireless channel. When channel state information at the transmitter (CSIT) is delayed by more than channel coherence time due to feedback delay, however, the effect of link adaptation can possibly be taken away if this delay is not taken into account. One way to deal with such delay is to predict current channel quality given available observation, but this would inevitably result in prediction error. In this paper, an algorithm with different view point is proposed. By using conditional cdf of current channel given observation, outage probability can be computed for each value of transmission rate RR. By assuming that the transmission block error rate (BLER) is dominated by outage probability, the expected throughput can also be computed, and RR can be determined to maximize it. The proposed scheme is designed to be optimal if channel has ergodicity, and it is shown to considerably outperform conventional schemes in certain Rayleigh fading channel model

    Backlog and Delay Reasoning in HARQ Systems

    Full text link
    Recently, hybrid-automatic-repeat-request (HARQ) systems have been favored in particular state-of-the-art communications systems since they provide the practicality of error detections and corrections aligned with repeat-requests when needed at receivers. The queueing characteristics of these systems have taken considerable focus since the current technology demands data transmissions with a minimum delay provisioning. In this paper, we investigate the effects of physical layer characteristics on data link layer performance in a general class of HARQ systems. Constructing a state transition model that combines queue activity at a transmitter and decoding efficiency at a receiver, we identify the probability of clearing the queue at the transmitter and the packet-loss probability at the receiver. We determine the effective capacity that yields the maximum feasible data arrival rate at the queue under quality-of-service constraints. In addition, we put forward non-asymptotic backlog and delay bounds. Finally, regarding three different HARQ protocols, namely Type-I HARQ, HARQ-chase combining (HARQ-CC) and HARQ-incremental redundancy (HARQ-IR), we show the superiority of HARQ-IR in delay robustness over the others. However, we further observe that the performance gap between HARQ-CC and HARQ-IR is quite negligible in certain cases. The novelty of our paper is a general cross-layer analysis of these systems, considering encoding/decoding in the physical layer and delay aspects in the data-link layer
    • …
    corecore