4 research outputs found

    A game theoretic approach to energy efficient cooperative cache maintenance in MANETs

    Get PDF
    There have been an increasingly large number of mobile handsets equipped with dual or multiple network interfaces. The server interface (e.g., GPRS, EDGE, UMTS) is responsible for communicating with the network operator, while the peer interfaces (e.g., Bluetooth, IEEE 802.11) are used to connect with other computing devices. However, they are usually used separately. In this paper, we investigate the use of both network interfaces to support energy efficient data applications among mobile clients. Specifically, we proposed a fully distributed protocol for mobile handsets to form cooperative groups to maintain cache consistency with minimal communication with the network operator. Our proposed protocol takes advantage of the low power consumption and high data rate of the peer interface. The aim is to reduce the use of the server interface, which is typically slower and involves higher power consumption. Furthermore, we also consider the presence of selfish clients. It is shown that groups formed by the proposed protocol constitutes a pure Nash Equilibrium. This suggests that our protocol is robust even in the presence of selfish clients. Simulation results confirm that, given the same energy resource, mobile clients running the proposed protocol complete more queries, experience longer lifetime and achieve smaller query latency. © 2005 IEEE.published_or_final_versio

    On localized application-driven topology control for energy-efficient wireless peer-to-peer file sharing

    Get PDF
    Wireless Peer-to-Peer (P2P) file sharing Is widely envisioned as one of the major applications of ad hoc networks in the near future. This trend is largely motivated by the recent advances in high-speed wireless communication technologies and high traffic demand for P2P file sharing applications. To achieve the ambitious goal of realizing a practical wireless P2P network, we need a scalable topology control protocol to solve the neighbor discovery problem and network organization problem. Indeed, we believe that the topology control mechanism should be application driven in that we should try to achieve an efficient connectivity among mobile devices in order to better serve the file sharing application. We propose a new protocol, which consists of two components, namely, Adjacency Set Construction (ASC) and Community-Based Asynchronous Wakeup (CAW). Our proposed protocol is shown to be able to enhance the fairness and provide an incentive mechanism in wireless P2P file sharing applications. It is also capable of increasing the energy efficiency. © 2008 IEEE.published_or_final_versio

    A Game Theoretic Approach to Energy Efficient Cooperative Cache Maintenance in MANETs

    No full text

    A Game Theoretic Approach to Energy Efficient Cooperative Cache Maintenance in MANETs

    No full text
    Abstract — There have been an increasingly large number of mobile handsets equipped with dual or multiple network interfaces. The server interface (e.g., GPRS, EDGE, UMTS) is responsible for communicating with the network operator, while the peer interfaces (e.g., Bluetooth, IEEE 802.11) are used to connect with other computing devices. However, they are usually used separately. In this paper, we investigate the use of both network interfaces to support energy efficient data applications among mobile clients. Specifically, we proposed a fully distributed protocol for mobile handsets to form cooperative groups to maintain cache consistency with minimal communication with the network operator. Our proposed protocol takes advantage of the low power consumption and high data rate of the peer interface. The aim is to reduce the use of the server interface, which is typically slower and involves higher power consumption. Furthermore, we also consider the presence of selfish clients. It is shown that groups formed by the proposed protocol constitutes a pure Nash Equilibrium. This suggests that our protocol is robust even in the presence of selfish clients. Simulation results confirm that, given the same energy resource, mobile clients running the proposed protocol complete more queries, experience longer lifetime and achieve smaller query latency. I
    corecore