398 research outputs found
Expert System with an Embedded Imaging Module for Diagnosing Lung Diseases
Lung diseases are one of the major causes of suffering and death in the world. Improved
survival rate could be obtained if the diseases can be detected at its early stage. Specialist
doctors with the expertise and experience to interpret medical images and diagnose
complex lung diseases are scarce. In this work, a rule-based expert system with an
embedded imaging module is developed to assist the general physicians in hospitals and
clinics to diagnose lung diseases whenever the services of specialist doctors are not
available. The rule-based expert system contains a large knowledge base of data from
various categories such as patient's personal and medical history, clinical symptoms,
clinical test results and radiological information. An imaging module is integrated into
the expert system for the enhancement of chest X-Ray images. The goal of this module is
to enhance the chest X-Ray images so that it can provide details similar to more
expensive methods such as MRl and CT scan. A new algorithm which is a modified
morphological grayscale top hat transform is introduced to increase the visibility of lung
nodules in chest X-Rays. Fuzzy inference technique is used to predict the probability of
malignancy of the nodules. The output generated by the expert system was compared
with the diagnosis made by the specialist doctors. The system is able to produce results\ud
which are similar to the diagnosis made by the doctors and is acceptable by clinical
standards
Expert System with an Embedded Imaging Module for Diagnosing Lung Diseases
Lung diseases are one of the major causes of suffering and death in the world. Improved
survival rate could be obtained if the diseases can be detected at its early stage. Specialist
doctors with the expertise and experience to interpret medical images and diagnose
complex lung diseases are scarce. In this work, a rule-based expert system with an
embedded imaging module is developed to assist the general physicians in hospitals and
clinics to diagnose lung diseases whenever the services of specialist doctors are not
available. The rule-based expert system contains a large knowledge base of data from
various categories such as patient's personal and medical history, clinical symptoms,
clinical test results and radiological information. An imaging module is integrated into
the expert system for the enhancement of chest X-Ray images. The goal of this module is
to enhance the chest X-Ray images so that it can provide details similar to more
expensive methods such as MRl and CT scan. A new algorithm which is a modified
morphological grayscale top hat transform is introduced to increase the visibility of lung
nodules in chest X-Rays. Fuzzy inference technique is used to predict the probability of
malignancy of the nodules. The output generated by the expert system was compared
with the diagnosis made by the specialist doctors. The system is able to produce results
which are similar to the diagnosis made by the doctors and is acceptable by clinical
standards
A comparative analysis of machine learning methods for classification type decision problems in healthcare
Advanced analytical techniques are gaining popularity in addressing complex classification type decision problems in many fields including healthcare and medicine. In this exemplary study, using digitized signal data, we developed predictive models employing three machine learning methods to diagnose an asthma patient based solely on the sounds acquired from the chest of the patient in a clinical laboratory. Although, the performances varied slightly, ensemble models (i.e., Random Forest and AdaBoost combined with Random Forest) achieved about 90% accuracy on predicting asthma patients, compared to artificial neural networks models that achieved about 80% predictive accuracy. Our results show that non-invasive, computerized lung sound analysis that rely on low-cost microphones and an embedded real-time microprocessor system would help physicians to make faster and better diagnostic decisions, especially in situations where x-ray and CT-scans are not reachable or not available. This study is a testament to the improving capabilities of analytic techniques in support of better decision making, especially in situations constraint by limited resources
Mathematical model of information conflict of information networks
The object of the research information networks under conditions of destabilizing factors.
Investigated problem: The problem that is solved in the study is devoted to modeling the functioning of information networks in conditions of destabilizing influences. Known mathematical models of the functioning of information networks described only a separate process (a set of functioning processes) of a separate level of interaction of open systems. However, the combination of known models of functioning does not allow to obtain a complete picture of the antagonistic information conflict of information networks and the subsystem of destabilizing influences. That is why, in this study, a mathematical model of the antagonistic information conflict of information networks under conditions of complex influence of destabilizing factors is proposed.
The main scientific results: The essence of the mathematical model, which determines its novelty, is that antagonistic information conflict is considered at seven levels of the model of interaction of open systems. Moreover, antagonistic information conflict is considered as a time series at each level of interaction of open systems, where conflict at a separate level affects antagonistic information conflict at other levels of the model of interaction of open systems.
The area of practical use of the research results: This mathematical model is useful in network architecture management systems of communication nodes of different hierarchy levels. This mathematical model will allow formalizing the process of antagonistic conflict of information networks in conditions of complex influence of destabilizing factors, determining the type and duration of destructive influence on the information network. It is also advisable to use this mathematical model as an integral part of the mathematical and software of intelligent decision support systems.
The area of practical use of the research results: software, information systems, decision support systems.
Innovative technological product: part of the software of automated information network resource management systems.
Scope of the innovative technological product: automated information network
Towards using Cough for Respiratory Disease Diagnosis by leveraging Artificial Intelligence: A Survey
Cough acoustics contain multitudes of vital information about
pathomorphological alterations in the respiratory system. Reliable and accurate
detection of cough events by investigating the underlying cough latent features
and disease diagnosis can play an indispensable role in revitalizing the
healthcare practices. The recent application of Artificial Intelligence (AI)
and advances of ubiquitous computing for respiratory disease prediction has
created an auspicious trend and myriad of future possibilities in the medical
domain. In particular, there is an expeditiously emerging trend of Machine
learning (ML) and Deep Learning (DL)-based diagnostic algorithms exploiting
cough signatures. The enormous body of literature on cough-based AI algorithms
demonstrate that these models can play a significant role for detecting the
onset of a specific respiratory disease. However, it is pertinent to collect
the information from all relevant studies in an exhaustive manner for the
medical experts and AI scientists to analyze the decisive role of AI/ML. This
survey offers a comprehensive overview of the cough data-driven ML/DL detection
and preliminary diagnosis frameworks, along with a detailed list of significant
features. We investigate the mechanism that causes cough and the latent cough
features of the respiratory modalities. We also analyze the customized cough
monitoring application, and their AI-powered recognition algorithms. Challenges
and prospective future research directions to develop practical, robust, and
ubiquitous solutions are also discussed in detail.Comment: 30 pages, 12 figures, 9 table
Modeling Realistic Geometries in Human Intrathoracic Airways
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes in the airways, which are often the first indicators of diseases. The accurate representation of airway geometry is crucial in research areas such as biomechanical modeling, acoustics, and particle deposition prediction. This review chronicles the evolution of these models, from their inception in the 1960s based on ideal mathematical constructs, to the introduction of advanced imaging techniques like computerized tomography (CT) and, to a lesser degree, magnetic resonance imaging (MRI). The advent of these techniques, coupled with the surge in data processing capabilities, has revolutionized the anatomical modeling of the bronchial tree. The limitations and challenges in both mathematical and image-based modeling are discussed, along with their applications. The foundation of image-based modeling is discussed, and recent segmentation strategies from CT and MRI scans and their clinical implications are also examined. By providing a chronological review of these models, this work offers insights into the evolution and potential future of airway geometry modeling, setting the stage for advancements in diagnosing and treating lung diseases. This review offers a novel perspective by highlighting how advancements in imaging techniques and data processing capabilities have significantly enhanced the accuracy and applicability of airway geometry models in both clinical and research settings. These advancements provide unique opportunities for developing patient-specific models
Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers
- …
