4 research outputs found

    Architectural decisions in AI-based systems: an ontological view

    Get PDF
    Architecting AI-based systems entails making some decisions that are particular to this type of systems. Therefore, it becomes necessary to gather all necessary knowledge to inform such decisions, and to articulate this knowledge in a form that facilitates knowledge transfer among different AI projects. In this exploratory paper, we first present the main results of a literature survey in the area, and then we propose a preliminary ontology for architectural decision making, which we exemplify using a subset of the papers selected in the literature review. In the discussion, we remark on the variety of decision types and system contexts, highlighting the need to further investigate the current state of research and practice in this area. Besides, we summarize our plans to move along this research area by widening the literature review and incorporating more AI-related concepts to this first version of the ontology.This paper has been funded by the Spanish Ministerio de Ciencia e Innovación under project / funding scheme PID2020-117191RB-I00 / AEI/10.13039/501100011033.Peer ReviewedPostprint (author's final draft

    Fudge: Fuzzy ontology building with consensuated fuzzy datatypes

    Get PDF
    An important problem in Fuzzy OWL 2 ontology building is the definition of fuzzy membership functions for real-valued fuzzy sets (so-called fuzzy datatypes in Fuzzy OWL 2 terminology). In this paper, we present a tool, called Fudge, whose aim is to support the consensual creation of fuzzy datatypes by aggregating the specifications given by a group of experts. Fudge is freeware and currently supports several linguistic aggregation strategies, including the convex combination, linguistic OWA, weighted mean and fuzzy OWA, and easily allows to build others in. We also propose and have implemented two novel linguistic aggregation operators, based on a left recursive form of the convex combination and of the linguistic OWA

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results
    corecore