34,254 research outputs found

    Shot boundary detection in MPEG videos using local and global indicators

    Get PDF
    Shot boundary detection (SBD) plays important roles in many video applications. In this letter, we describe a novel method on SBD operating directly in the compressed domain. First, several local indicators are extracted from MPEG macroblocks, and AdaBoost is employed for feature selection and fusion. The selected features are then used in classifying candidate cuts into five sub-spaces via pre-filtering and rule-based decision making. Following that, global indicators of frame similarity between boundary frames of cut candidates are examined using phase correlation of dc images. Gradual transitions like fade, dissolve, and combined shot cuts are also identified. Experimental results on the test data from TRECVID'07 have demonstrated the effectiveness and robustness of our proposed methodology. * INSPEC o Controlled Indexing decision making , image segmentation , knowledge based systems , video coding o Non Controlled Indexing AdaBoost , MPEG videos , feature selection , global indicator , local indicator , rule-based decision making , shot boundary detection , video segmentation * Author Keywords Decision making , TRECVID , shot boundary detection (SBD) , video segmentation , video signal processing References 1. J. Yuan , H. Wang , L. Xiao , W. Zheng , J. L. F. Lin and B. Zhang "A formal study of shot boundary detection", IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 168 2007. Abstract |Full Text: PDF (2789KB) 2. C. Grana and R. Cucchiara "Linear transition detection as a unified shot detection approach", IEEE Trans. Circuits Syst. Video Technol., vol. 17, pp. 483 2007. Abstract |Full Text: PDF (505KB) 3. Q. Urhan , M. K. Gullu and S. Erturk "Modified phase-correlation based robust hard-cut detection with application to archive film", IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 753 2006. Abstract |Full Text: PDF (3808KB) 4. C. Cotsaces , N. Nikolaidis and I. Pitas "Video shot detection and condensed representation: A review", Proc. IEEE Signal Mag., vol. 23, pp. 28 2006. 5. National Institute of Standards and Technology (NIST), pp. [online] Available: http://www-nlpir.nist.gov/projects/trecvid/ 6. J. Bescos "Real-time shot change detection over online MPEG-2 video", IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 475 2004. Abstract |Full Text: PDF (1056KB) 7. H. Lu and Y. P. Tan "An effective post-refinement method for shot boundary detection", IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 1407 2005. Abstract |Full Text: PDF (3128KB) 8. G. Boccignone , A. Chianese , V. Moscato and A. Picariello "Foveated shot detection for video segmentation", IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 365 2005. Abstract |Full Text: PDF (2152KB) 9. Z. Cernekova , I. Pitas and C. Nikou "Information theory-based shot cut/fade detection and video summarization", IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 82 2006. Abstract |Full Text: PDF (1184KB) 10. L.-Y. Duan , M. Xu , Q. Tian , C.-S. Xu and J. S. Jin "A unified framework for semantic shot classification in sports video", IEEE Trans. Multimedia, vol. 7, pp. 1066 2005. Abstract |Full Text: PDF (2872KB) 11. H. Fang , J. M. Jiang and Y. Feng "A fuzzy logic approach for detection of video shot boundaries", Pattern Recogn., vol. 39, pp. 2092 2006. [CrossRef] 12. R. A. Joyce and B. Liu "Temporal segmentation of video using frame and histogram space", IEEE Trans. Multimedia, vol. 8, pp. 130 2006. Abstract |Full Text: PDF (864KB) 13. A. Hanjalic "Shot boundary detection: Unraveled and resolved", IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 90 2002. Abstract |Full Text: PDF (289KB) 14. S.-C. Pei and Y.-Z. Chou "Efficient MPEG compressed video analysis using macroblock type information", IEEE Trans. Multimedia, vol. 1, pp. 321 1999. Abstract |Full Text: PDF (612KB) 15. C.-L. Huang and B.-Y. Liao "A robust scene-change detection method for video segmentation", IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp. 1281 2001. Abstract |Full Text: PDF (241KB) 16. Y. Freund and R. E. Schapire "A decision-theoretic generalization of online learning and an application to boosting", J. Comput. Syst. Sci., vol. 55, pp. 119 1997. [CrossRef] On this page * Abstract * Index Terms * References Brought to you by STRATHCLYDE UNIVERSITY LIBRARY * Your institute subscribes to: * IEEE-Wiley eBooks Library , IEEE/IET Electronic Library (IEL) * What can I access? Terms of Us

    Goal Detection in Soccer Video: Role-Based Events Detection Approach

    Get PDF
    Soccer video processing and analysis to find critical events such as occurrences of goal event have been one of the important issues and topics of active researches in recent years. In this paper, a new role-based framework is proposed for goal event detection in which the semantic structure of soccer game is used. Usually after a goal scene, the audiences’ and reporters’ sound intensity is increased, ball is sent back to the center and the camera may: zoom on Player, show audiences’ delighting, repeat the goal scene or display a combination of them. Thus, the occurrence of goal event will be detectable by analysis of sequences of above roles. The proposed framework in this paper consists of four main procedures: 1- detection of game’s critical events by using audio channel, 2- detection of shot boundary and shots classification, 3- selection of candidate events according to the type of shot and existence of goalmouth in the shot, 4- detection of restarting the game from the center of the field. A new method for shot classification is also presented in this framework. Finally, by applying the proposed method it was shown that the goal events detection has a good accuracy and the percentage of detection failure is also very low.DOI:http://dx.doi.org/10.11591/ijece.v4i6.637

    Finding Temporally Consistent Occlusion Boundaries in Videos using Geometric Context

    Full text link
    We present an algorithm for finding temporally consistent occlusion boundaries in videos to support segmentation of dynamic scenes. We learn occlusion boundaries in a pairwise Markov random field (MRF) framework. We first estimate the probability of an spatio-temporal edge being an occlusion boundary by using appearance, flow, and geometric features. Next, we enforce occlusion boundary continuity in a MRF model by learning pairwise occlusion probabilities using a random forest. Then, we temporally smooth boundaries to remove temporal inconsistencies in occlusion boundary estimation. Our proposed framework provides an efficient approach for finding temporally consistent occlusion boundaries in video by utilizing causality, redundancy in videos, and semantic layout of the scene. We have developed a dataset with fully annotated ground-truth occlusion boundaries of over 30 videos ($5000 frames). This dataset is used to evaluate temporal occlusion boundaries and provides a much needed baseline for future studies. We perform experiments to demonstrate the role of scene layout, and temporal information for occlusion reasoning in dynamic scenes.Comment: Applications of Computer Vision (WACV), 2015 IEEE Winter Conference o

    *Denotes equal contribution ADSC Submission at THUMOS Challenge 2015

    Get PDF
    Abstract. This notebook paper describes our approaches for the action recognition and temporal localization tasks of the THUMOS Challenge 2015. For the action recognition task, we use the subsequence-score distribution (SSD) framework. We use the Improved Fisher Vectors (IFVs) encoding of the Improved Dense Trajectories (IDTs) to capture motion, as well as a VGG-16 deep net model to extract 4096 dimension feature vector to capture the context information. A linear SVM is trained for classification of 101 categories' action video clips. For the temporal localization task, we use the IFV encoding at 9 different temporal scales, and apply the above SVM to obtain a pyramid score descriptor. The score features are used for generating action labels at frame level, and by proper post processing we are able to detect the 20 class actions in given videos. Keywords: Action recognition, temporal localization, dense trajectories, deep net features, subsequence score distribution, temporal pyramid score descriptor Motion and Scene Features For motion features, we use the Improved Dense Trajectories (IDTs) from For scene features, we use a 4096 dimensional feature vector from each video frame using the convolutional neural network. We fine-tuned the VGG-16 model [3] on the fully connected layers, and use the outputs from the last rectified linear layer as features. The MatConvNet implementation [9] is used for scene feature extraction. The Action Recognition Task Subsequence Generation We apply the shot boundary detection to each input video to produce subsequence video clips. The shot boundary proposal via HOG from [4] and colour histogram-based shot boundary detection algorithm i

    Multiresolution hierarchy co-clustering for semantic segmentation in sequences with small variations

    Full text link
    This paper presents a co-clustering technique that, given a collection of images and their hierarchies, clusters nodes from these hierarchies to obtain a coherent multiresolution representation of the image collection. We formalize the co-clustering as a Quadratic Semi-Assignment Problem and solve it with a linear programming relaxation approach that makes effective use of information from hierarchies. Initially, we address the problem of generating an optimal, coherent partition per image and, afterwards, we extend this method to a multiresolution framework. Finally, we particularize this framework to an iterative multiresolution video segmentation algorithm in sequences with small variations. We evaluate the algorithm on the Video Occlusion/Object Boundary Detection Dataset, showing that it produces state-of-the-art results in these scenarios.Comment: International Conference on Computer Vision (ICCV) 201
    • …
    corecore