2 research outputs found

    Lifeguard: Local Health Awareness for More Accurate Failure Detection

    Full text link
    SWIM is a peer-to-peer group membership protocol with attractive scaling and robustness properties. However, slow message processing can cause SWIM to mark healthy members as failed (so called false positive failure detection), despite inclusion of a mechanism to avoid this. We identify the properties of SWIM that lead to the problem, and propose Lifeguard, a set of extensions to SWIM which consider that the local failure detector module may be at fault, via the concept of local health. We evaluate this approach in a precisely controlled environment and validate it in a real-world scenario, showing that it drastically reduces the rate of false positives. The false positive rate and detection time for true failures can be reduced simultaneously, compared to the baseline levels of SWIM

    A framework for time indexing in sensor networks

    No full text
    Abstract β€” In this paper, we define the time indexing problem as the in-network storage and querying of sensor network data based solely on the time attribute. We argue qualitatively why existing storage schemes may be insufficient as solutions. We then present, analyze, and evaluate novel and lightweight solutions to both the storage and the querying sub-problems for time indexing. First, the time-indexed storage problem is formally defined, and two formulations are presented, seeking to optimize generic utility functions that are derived from concerns about energy, bandwidth usage, and storage balancing. We present and analyze decentralized protocols to solve these formulations, and prove the optimality of some of our solutions. Secondly, maintenance and use of simple overlays among rendezvous point nodes, in order to enable fault-tolerant and efficient time-indexed queries, are discussed. Finally, simulation results are presented to quantify performance characteristics of the protocols, and we find that our proposed scheme has low query overhead that scales with system size and density while exhibiting very good load balancing and fault tolerance properties. The use of time-indexed structure is shown to achieve more than double the life time of sensor networks compared to existing approaches in some scenarios. I
    corecore