2 research outputs found

    High tech automated bottling process for small to medium scale enterprises using PLC, scada and basic industry 4.0 concepts

    Get PDF
    The automation of industrial processes has been one of the greatest innovations in the industrial sector. It allows faster and accurate operations of production processes while producing more outputs than old manual production techniques. In the beverage industry, this innovation was also well embraced, especially to improve its bottling processes. However it has been proven that a continuous optimization of automation techniques using advanced and current trend of automation is the only way industrial companies will survive in a very competitive market. This becomes more challenging for small to medium scale enterprises (SMEs) which are not always keen in adopting new technologies by fear of overspending their little revenues. By doing so, SMEs are exposing themselves to limited growth and vulnerable lifecycle in this fast growing automation world. The main contribution of this study was to develop practical and affordable applications that will optimize the bottling process of a SME beverage plant by combining its existing production resources to basic principles of the current trend of automation, Industry 4.0 (I40). This research enabled the small beverage industry to achieve higher production rate, better delivery time and easy access of plant information through production forecast using linear regression, predictive maintenance using speed vibration sensor and decentralization of production monitoring via cloud applications. The existing plant Siemens S7-1200 programmable logic controller (PLC) and ZENON supervisory control and data acquisition (SCADA) system were used to program the optimized process with very few additional resources. This study also opened doors for automation in SMEs, in general, to use I40 in their production processes with available means and limited cost.School of ComputingM.Tech (Engineering, Electrical

    A framework for improving process robustness with quantification of uncertainties in Industry 4.0

    No full text
    Digitalisation of industrial processes, also called the fourth industrial revolution, is leading to availability of large volume of data containing measurements of many process variables. This offers new opportunities to gain deeper insights on process variability and its effects on quality and performance. Manufacturing facilities already use data driven approaches to study process variability and find improvement opportunities through methodologies such as Design of Experiment (DOE) and Six Sigma. However, current approaches are not adequate to model the complexity of modern manufacturing systems, especially when these systems exhibit non-linear interactions between high numbers of variables. In this paper a methodology to improve process robustness is proposed. This methodology uses non-parametric estimation of quantiles of response to discover new tolerance limits of factors. This method does not make any stringent assumption of linearity and works well in finding the interactions effects of covariates on response quantiles. Process robustness, which is defined as the ability of a process to have acceptable quality whilst tolerating variability of the input, is measured through calculation of Likelihood Ratios (LR) associated to the new tolerance limits. Uncertainty of this estimation is quantified via simulations using the bootstrapping method. The novel contribution of this paper is the application of quantile regression and likelihood ratios to the tolerance synthesis problem applied to a low alloy foundry. It shows the validity of the methodology in modelling behaviours of complex manufacturing processes using data driven approaches to gain new insights on causes of process variabilities and discover new product specific process knowledge. This work contributes to bridging the gap between theory and application towards implementing Industry 4.0 predictive analytics
    corecore