5,731 research outputs found

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Autonomic care platform for optimizing query performance

    Get PDF
    Background: As the amount of information in electronic health care systems increases, data operations get more complicated and time-consuming. Intensive Care platforms require a timely processing of data retrievals to guarantee the continuous display of recent data of patients. Physicians and nurses rely on this data for their decision making. Manual optimization of query executions has become difficult to handle due to the increased amount of queries across multiple sources. Hence, a more automated management is necessary to increase the performance of database queries. The autonomic computing paradigm promises an approach in which the system adapts itself and acts as self-managing entity, thereby limiting human interventions and taking actions. Despite the usage of autonomic control loops in network and software systems, this approach has not been applied so far for health information systems. Methods: We extend the COSARA architecture, an infection surveillance and antibiotic management service platform for the Intensive Care Unit (ICU), with self-managed components to increase the performance of data retrievals. We used real-life ICU COSARA queries to analyse slow performance and measure the impact of optimizations. Each day more than 2 million COSARA queries are executed. Three control loops, which monitor the executions and take action, have been proposed: reactive, deliberative and reflective control loops. We focus on improvements of the execution time of microbiology queries directly related to the visual displays of patients' data on the bedside screens. Results: The results show that autonomic control loops are beneficial for the optimizations in the data executions in the ICU. The application of reactive control loop results in a reduction of 8.61% of the average execution time of microbiology results. The combined application of the reactive and deliberative control loop results in an average query time reduction of 10.92% and the combination of reactive, deliberative and reflective control loops provides a reduction of 13.04%. Conclusions: We found that by controlled reduction of queries' executions the performance for the end-user can be improved. The implementation of autonomic control loops in an existing health platform, COSARA, has a positive effect on the timely data visualization for the physician and nurse

    Towards a Framework for Managing Inconsistencies in Systems of Systems

    Get PDF
    The growth in the complexity of software systems has led to a proliferation of systems that have been created independently to provide specific functions, such as activity tracking, household energy management or personal nutrition assistance. The runtime composition of these individual systems into Systems of Systems (SoSs) enables support for more sophisticated functionality that cannot be provided by individual constituent systems on their own. However, in order to realize the benefits of these functionalities it is necessary to address a number of challenges associated with SoSs, including, but not limited to, operational and managerial independence, geographic distribution of participating systems, evolutionary development, and emergent conflicting behavior that can occur due interactions between the requirements of the participating systems. In this paper, we present a framework for conflict management in SoSs. The management of conflicting requirements involves four steps, namely (a) overlap detection, (b) conflict identification, (c) conflict diagnosis, and (d) conflict resolution based on the use of a utility function. The framework uses a Monitor-Analyze-Plan- Execute- Knowledge (MAPE-K) architectural pattern. In order to illustrate the work, we use an example SoS ecosystem designed to support food security at different levels of granularity

    Federated and autonomic management of multimedia services

    Get PDF
    Over the years, the Internet has significantly evolved in size and complexity. Additionally, the modern multimedia services it offers have considerably more stringent Quality of Service (QoS) requirements than traditional static services. These factors contribute to the ever-increasing complexity and cost to manage the Internet and its services. In the dissertation, a novel network management architecture is proposed to overcome these problems. It supports QoS-guarantees of multimedia services across the Internet, by setting up end-to-end network federations. A network federation is defined as a persistent cross-organizational agreement that enables the cooperating networks to share capabilities. Additionally, the architecture incorporates aspects from autonomic network management to tackle the ever-growing management complexity of modern communications networks. Specifically, a hierarchical approach is presented, which guarantees scalable collaboration of huge amounts of self-governing autonomic management components

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    Context modeling and constraints binding in web service business processes

    Get PDF
    Context awareness is a principle used in pervasive services applications to enhance their exibility and adaptability to changing conditions and dynamic environments. Ontologies provide a suitable framework for context modeling and reasoning. We develop a context model for executable business processes { captured as an ontology for the web services domain. A web service description is attached to a service context profile, which is bound to the context ontology. Context instances can be generated dynamically at services runtime and are bound to context constraint services. Constraint services facilitate both setting up constraint properties and constraint checkers, which determine the dynamic validity of context instances. Data collectors focus on capturing context instances. Runtime integration of both constraint services and data collectors permit the business process to achieve dynamic business goals

    Machine-assisted Cyber Threat Analysis using Conceptual Knowledge Discovery

    Get PDF
    Over the last years, computer networks have evolved into highly dynamic and interconnected environments, involving multiple heterogeneous devices and providing a myriad of services on top of them. This complex landscape has made it extremely difficult for security administrators to keep accurate and be effective in protecting their systems against cyber threats. In this paper, we describe our vision and scientific posture on how artificial intelligence techniques and a smart use of security knowledge may assist system administrators in better defending their networks. To that end, we put forward a research roadmap involving three complimentary axes, namely, (I) the use of FCA-based mechanisms for managing configuration vulnerabilities, (II) the exploitation of knowledge representation techniques for automated security reasoning, and (III) the design of a cyber threat intelligence mechanism as a CKDD process. Then, we describe a machine-assisted process for cyber threat analysis which provides a holistic perspective of how these three research axes are integrated together
    • 

    corecore