2,524 research outputs found

    A formal proof of the Kepler conjecture

    No full text
    This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project

    A formal proof of the Kepler conjecture

    Get PDF
    This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project

    Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations

    Full text link
    We present a formal tool for verification of multivariate nonlinear inequalities. Our verification method is based on interval arithmetic with Taylor approximations. Our tool is implemented in the HOL Light proof assistant and it is capable to verify multivariate nonlinear polynomial and non-polynomial inequalities on rectangular domains. One of the main features of our work is an efficient implementation of the verification procedure which can prove non-trivial high-dimensional inequalities in several seconds. We developed the verification tool as a part of the Flyspeck project (a formal proof of the Kepler conjecture). The Flyspeck project includes about 1000 nonlinear inequalities. We successfully tested our method on more than 100 Flyspeck inequalities and estimated that the formal verification procedure is about 3000 times slower than an informal verification method implemented in C++. We also describe future work and prospective optimizations for our method.Comment: 15 page

    Formal Computations and Methods

    Get PDF
    We present formal verification methods and procedures for finding bounds of linear programs and proving nonlinear inequalities. An efficient implementation of formal arithmetic computations is also described. Our work is an integral part of the Flyspeck project (a formal proof of the Kepler conjecture) and we show how developed formal procedures solve formal computational problems in this project. We also introduce our implementation of SSReflect language (originally developed by G. Gonthier in Coq) in HOL Light

    The Strong Dodecahedral Conjecture and Fejes Toth's Conjecture on Sphere Packings with Kissing Number Twelve

    Full text link
    This article sketches the proofs of two theorems about sphere packings in Euclidean 3-space. The first is K. Bezdek's strong dodecahedral conjecture: the surface area of every bounded Voronoi cell in a packing of balls of radius 1 is at least that of a regular dodecahedron of inradius 1. The second theorem is L. Fejes Toth's contact conjecture, which asserts that in 3-space, any packing of congruent balls such that each ball is touched by twelve others consists of hexagonal layers. Both proofs are computer assisted. Complete proofs of these theorems appear in the author's book "Dense Sphere Packings" and a related preprintComment: The citations and title have been update
    • …
    corecore