17,921 research outputs found

    Data Driven Discovery in Astrophysics

    Get PDF
    We review some aspects of the current state of data-intensive astronomy, its methods, and some outstanding data analysis challenges. Astronomy is at the forefront of "big data" science, with exponentially growing data volumes and data rates, and an ever-increasing complexity, now entering the Petascale regime. Telescopes and observatories from both ground and space, covering a full range of wavelengths, feed the data via processing pipelines into dedicated archives, where they can be accessed for scientific analysis. Most of the large archives are connected through the Virtual Observatory framework, that provides interoperability standards and services, and effectively constitutes a global data grid of astronomy. Making discoveries in this overabundance of data requires applications of novel, machine learning tools. We describe some of the recent examples of such applications.Comment: Keynote talk in the proceedings of ESA-ESRIN Conference: Big Data from Space 2014, Frascati, Italy, November 12-14, 2014, 8 pages, 2 figure

    Flexible data input layer architecture (FDILA) for quick-response decision making tools in volatile manufacturing systems

    Get PDF
    This paper proposes the foundation for a flexible data input management system as a vital part of a generic solution for quick-response decision making. Lack of a comprehensive data input layer between data acquisition and processing systems has been realized and thought of. The proposed FDILA is applicable to a wide variety of volatile manufacturing environments. It provides a generic platform that enables systems designers to define any number of data entry points and types regardless of their make and specifications in a standard fashion. This is achieved by providing a variable definition layer immediately on top of the data acquisition layer and before data pre-processing layer. For proof of concept, National Instruments’ Labview data acquisition software is used to simulate a typical shop floor data acquisition system. The extracted data can then be fed into a data mining module that builds cost modeling functions involving the plant’s Key Performance Factors

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea
    corecore