3,494 research outputs found

    Stealthy Deception Attacks Against SCADA Systems

    Full text link
    SCADA protocols for Industrial Control Systems (ICS) are vulnerable to network attacks such as session hijacking. Hence, research focuses on network anomaly detection based on meta--data (message sizes, timing, command sequence), or on the state values of the physical process. In this work we present a class of semantic network-based attacks against SCADA systems that are undetectable by the above mentioned anomaly detection. After hijacking the communication channels between the Human Machine Interface (HMI) and Programmable Logic Controllers (PLCs), our attacks cause the HMI to present a fake view of the industrial process, deceiving the human operator into taking manual actions. Our most advanced attack also manipulates the messages generated by the operator's actions, reversing their semantic meaning while causing the HMI to present a view that is consistent with the attempted human actions. The attacks are totaly stealthy because the message sizes and timing, the command sequences, and the data values of the ICS's state all remain legitimate. We implemented and tested several attack scenarios in the test lab of our local electric company, against a real HMI and real PLCs, separated by a commercial-grade firewall. We developed a real-time security assessment tool, that can simultaneously manipulate the communication to multiple PLCs and cause the HMI to display a coherent system--wide fake view. Our tool is configured with message-manipulating rules written in an ICS Attack Markup Language (IAML) we designed, which may be of independent interest. Our semantic attacks all successfully fooled the operator and brought the system to states of blackout and possible equipment damage

    SEABASS: Symmetric-keychain Encryption and Authentication for Building Automation Systems

    Get PDF
    There is an increasing security risk in Building Automation Systems (BAS) in that its communication is unprotected, resulting in the adversary having the capability to inject spurious commands to the actuators to alter the behaviour of BAS. The communication between the Human-Machine-Interface (HMI) and the controller (PLC) is vulnerable as there is no secret key being used to protect the authenticity, confidentiality and integrity of the sensor data and commands. We propose SEABASS, a lightweight key management scheme to distribute and manage session keys between HMI and PLCs, providing a secure communication channel between any two communicating devices in BAS through a symmetric-key based hash-chain encryption and authentication of message exchange. Our scheme facilitates automatic renewal of session keys periodically based on the use of a reversed hash-chain. A prototype was implemented using the BACnet/IP communication protocol and the preliminary results show that the symmetric keychain approach is lightweight and incurs low latency

    On Ladder Logic Bombs in Industrial Control Systems

    Full text link
    In industrial control systems, devices such as Programmable Logic Controllers (PLCs) are commonly used to directly interact with sensors and actuators, and perform local automatic control. PLCs run software on two different layers: a) firmware (i.e. the OS) and b) control logic (processing sensor readings to determine control actions). In this work, we discuss ladder logic bombs, i.e. malware written in ladder logic (or one of the other IEC 61131-3-compatible languages). Such malware would be inserted by an attacker into existing control logic on a PLC, and either persistently change the behavior, or wait for specific trigger signals to activate malicious behaviour. For example, the LLB could replace legitimate sensor readings with manipulated values. We see the concept of LLBs as a generalization of attacks such as the Stuxnet attack. We introduce LLBs on an abstract level, and then demonstrate several designs based on real PLC devices in our lab. In particular, we also focus on stealthy LLBs, i.e. LLBs that are hard to detect by human operators manually validating the program running in PLCs. In addition to introducing vulnerabilities on the logic layer, we also discuss countermeasures and we propose two detection techniques.Comment: 11 pages, 14 figures, 2 tables, 1 algorith

    A log mining approach for process monitoring in SCADA

    Get PDF
    SCADA (Supervisory Control and Data Acquisition) systems are used for controlling and monitoring industrial processes. We propose a methodology to systematically identify potential process-related threats in SCADA. Process-related threats take place when an attacker gains user access rights and performs actions, which look legitimate, but which are intended to disrupt the SCADA process. To detect such threats, we propose a semi-automated approach of log processing. We conduct experiments on a real-life water treatment facility. A preliminary case study suggests that our approach is effective in detecting anomalous events that might alter the regular process workflow
    corecore