17 research outputs found

    Faster Deterministic Algorithms for Packing, Matching and tt-Dominating Set Problems

    Full text link
    In this paper, we devise three deterministic algorithms for solving the mm-set kk-packing, mm-dimensional kk-matching, and tt-dominating set problems in time O∗(5.44mk)O^*(5.44^{mk}), O∗(5.44(m−1)k)O^*(5.44^{(m-1)k}) and O∗(5.44t)O^*(5.44^{t}), respectively. Although recently there has been remarkable progress on randomized solutions to those problems, our bounds make good improvements on the best known bounds for deterministic solutions to those problems.Comment: ISAAC13 Submission. arXiv admin note: substantial text overlap with arXiv:1303.047

    Narrow sieves for parameterized paths and packings

    Full text link
    We present randomized algorithms for some well-studied, hard combinatorial problems: the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space; the constant bases of the exponentials are significantly smaller than in previous works. For example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with dd colors in time within a polynomial factor of O(2^{(d-1)n/2}). Our techniques build upon and generalize some recently published ideas by I. Koutis (ICALP 2009), R. Williams (IPL 2009), and A. Bj\"orklund (STACS 2010, FOCS 2010)

    Faster fixed-parameter tractable algorithms for matching and packing problems. In:

    Get PDF
    Abstract We obtain faster algorithms for problems such as r-dimensional matching and r-set packing when the size k of the solution is considered a parameter. We first establish a general framework for finding and exploiting small problem kernels (of size polynomial in k). This technique lets us combine Alon, Yuster and Zwick's colorcoding technique with dynamic programming to obtain faster fixed-parameter algo- rithms for these problems. Our algorithms run in time O(n + 2 O(k) ), an improvement over previous algorithms for some of these problems running in time O(n + k O(k) ). The flexibility of our approach allows tuning of algorithms to obtain smaller constants in the exponent

    On local search and LP and SDP relaxations for k-Set Packing

    Get PDF
    Set packing is a fundamental problem that generalises some well-known combinatorial optimization problems and knows a lot of applications. It is equivalent to hypergraph matching and it is strongly related to the maximum independent set problem. In this thesis we study the k-set packing problem where given a universe U and a collection C of subsets over U, each of cardinality k, one needs to find the maximum collection of mutually disjoint subsets. Local search techniques have proved to be successful in the search for approximation algorithms, both for the unweighted and the weighted version of the problem where every subset in C is associated with a weight and the objective is to maximise the sum of the weights. We make a survey of these approaches and give some background and intuition behind them. In particular, we simplify the algebraic proof of the main lemma for the currently best weighted approximation algorithm of Berman ([Ber00]) into a proof that reveals more intuition on what is really happening behind the math. The main result is a new bound of k/3 + 1 + epsilon on the integrality gap for a polynomially sized LP relaxation for k-set packing by Chan and Lau ([CL10]) and the natural SDP relaxation [NOTE: see page iii]. We provide detailed proofs of lemmas needed to prove this new bound and treat some background on related topics like semidefinite programming and the Lovasz Theta function. Finally we have an extended discussion in which we suggest some possibilities for future research. We discuss how the current results from the weighted approximation algorithms and the LP and SDP relaxations might be improved, the strong relation between set packing and the independent set problem and the difference between the weighted and the unweighted version of the problem.Comment: There is a mistake in the following line of Theorem 17: "As an induced subgraph of H with more edges than vertices constitutes an improving set". Therefore, the proofs of Theorem 17, and hence Theorems 19, 23 and 24, are false. It is still open whether these theorems are tru

    Mixing Color Coding-Related Techniques

    Full text link
    Narrow sieves, representative sets and divide-and-color are three breakthrough color coding-related techniques, which led to the design of extremely fast parameterized algorithms. We present a novel family of strategies for applying mixtures of them. This includes: (a) a mix of representative sets and narrow sieves; (b) a faster computation of representative sets under certain separateness conditions, mixed with divide-and-color and a new technique, "balanced cutting"; (c) two mixtures of representative sets, iterative compression and a new technique, "unbalanced cutting". We demonstrate our strategies by obtaining, among other results, significantly faster algorithms for kk-Internal Out-Branching and Weighted 3-Set kk-Packing, and a framework for speeding-up the previous best deterministic algorithms for kk-Path, kk-Tree, rr-Dimensional kk-Matching, Graph Motif and Partial Cover
    corecore