24,475 research outputs found

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    Incremental Training of a Detector Using Online Sparse Eigen-decomposition

    Full text link
    The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand. In addition, once learned, an offline detector can not make use of newly arriving data. To alleviate these drawbacks, online learning has been adopted with the following objectives: (1) the technique should be computationally and storage efficient; (2) the updated classifier must maintain its high classification accuracy. In this paper, we propose an effective and efficient framework for learning an adaptive online greedy sparse linear discriminant analysis (GSLDA) model. Unlike many existing online boosting detectors, which usually apply exponential or logistic loss, our online algorithm makes use of LDA's learning criterion that not only aims to maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions. We provide a better alternative for online boosting algorithms in the context of training a visual object detector. We demonstrate the robustness and efficiency of our methods on handwriting digit and face data sets. Our results confirm that object detection tasks benefit significantly when trained in an online manner.Comment: 14 page
    • …
    corecore