35,655 research outputs found

    A fast least-squares algorithm for population inference

    Get PDF

    Continuous record Laplace-based inference about the break date in structural change models

    Full text link
    Building upon the continuous record asymptotic framework recently introduced by Casini and Perron (2018a) for inference in structural change models, we propose a Laplace-based (Quasi-Bayes) procedure for the construction of the estimate and confidence set for the date of a structural change. It is defined by an integration rather than an optimization-based method.A transformation of the least-squares criterion function is evaluated in order to derive a proper distribution, referred to as the Quasi-posterior. For a given choice of a loss function, the Laplace-type estimator is the minimizer of the expected risk with the expectation taken under the Quasi-posterior. Besides providing an alternative estimate that is more precise—lower mean absolute error (MAE) and lower root-mean squared error (RMSE)—than the usual least-squares one, the Quasi-posterior distribution can be used to construct asymptotically valid inference using the concept of Highest Density Region. The resulting Laplace-based inferential procedure is shown to have lower MAE and RMSE, and the confidence sets strike the best balance between empirical coverage rates and average lengths of the confidence sets relative to traditional long-span methods, whether the break size is small or large.First author draf

    Efficient parametric inference for stochastic biological systems with measured variability

    Full text link
    Stochastic systems in biology often exhibit substantial variability within and between cells. This variability, as well as having dramatic functional consequences, provides information about the underlying details of the system's behaviour. It is often desirable to infer properties of the parameters governing such systems given experimental observations of the mean and variance of observed quantities. In some circumstances, analytic forms for the likelihood of these observations allow very efficient inference: we present these forms and demonstrate their usage. When likelihood functions are unavailable or difficult to calculate, we show that an implementation of approximate Bayesian computation (ABC) is a powerful tool for parametric inference in these systems. However, the calculations required to apply ABC to these systems can also be computationally expensive, relying on repeated stochastic simulations. We propose an ABC approach that cheaply eliminates unimportant regions of parameter space, by addressing computationally simple mean behaviour before explicitly simulating the more computationally demanding variance behaviour. We show that this approach leads to a substantial increase in speed when applied to synthetic and experimental datasets.Comment: 11 pages, 4 fig
    • …
    corecore