2 research outputs found

    Rate control for HEVC intra-coding based on piecewise linear approximations

    Get PDF
    This paper proposes a rate control (RC) algorithm for intra-coded sequences (I-frames) within the context of block-based predictive transform coding (PTC) that employs piecewise linear approximations of the rate-distortion (RD) curve of each frame. Specifically, it employs information about the rate (R) and distortion (D) of already compressed blocks within the current frame to linearly approximate the slope of the corresponding RD curve. The proposed algorithm is implemented in the High-Efficiency Video Coding (HEVC) standard and compared with the current HEVC RC algorithm, which is based on a trained rate lambda (R-λ) model. Evaluations on a variety of intra-coded sequences show that the proposed RC algorithm not only attains the overall target bit rate more accurately than the current RC algorithm but is also capable of encoding each I-frame at a more constant bit rate according to the overall bit budget, thus avoiding high bit rate fluctuations across the sequence

    HEVC video compression hardware designs

    Get PDF
    High Efficiency Video Coding (HEVC), a recently developed international standard for video compression, offers significantly better video compression efficiency than previous international standards. However, this coding gain comes with an increase in computational complexity. Therefore, in this thesis, we first designed a high performance hardware architecture for deblocking filter algorithm used in HEVC standard. Two parallel datapaths are used in the hardware to increase its performance. The proposed hardware is implemented in Verilog HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX240T FPGA, and it is verified to work correctly on a Xilinx ML605 FPGA board which includes a Xilinx XC6VLX240T FPGA. The FPGA implementation can work at 108 MHz, and it can code 30 full HD (1920x1080) video frames per second. We then proposed an energy reduction technique for Sum of Absolute Transformed Difference (SATD) based HEVC intra mode decision algorithm. We designed an efficient hardware architecture for SATD based HEVC intra mode decision algorithm including the proposed technique. The proposed hardware is implemented in Verilog HDL. The Verilog RTL code is mapped to a Xilinx XC6VLX365T FPGA, and it is verified with post place & route simulations. The FPGA implementation can work at 116 MHz, and it can code 21 HD (1280x720) video frames per second. The proposed technique reduced its energy consumption up to 64.6% on this FPGA without any PSNR loss
    corecore