1,951 research outputs found

    Hysteresis Current Control Operation of Flying Capacitor Multilevel Inverter and Its Application in Shunt Compensation of Distribution Systems

    Get PDF
    Flying capacitor multilevel inverter (FCMLI) is a multiple voltage level inverter topology intended for high voltage and power operations with low distortion. It uses capacitors, called flying capacitors for clamping the voltage across the power semiconductor devices. In this paper, the implementation of a distribution static compensator (DSTATCOM) using an FCMLI is presented. A hysteresis current control technique for controlling the injected current by the FCMLI-based DSTATCOM is discussed. A new method for controlling the flying capacitor voltages is proposed which ensures that their voltages remain constant and at the same time maintain the desired current profile under the hysteresis current control operation. Simulation studies are performed using PSCAD/EMTDC to validate the efficacy of the control scheme and the FCMLI-based DSTATCOM

    Study of power conditioning system of superconducting magnetic energy storage system

    Get PDF
    A Superconducting Magnetic Energy Storage System (SMES) can be utilized for the compensation of nonlinear and pulsating loads. In this paper a power conditioning system (PCS) is designed to achieve SMES to work as a shunt active power filter and power conditioner at the same time. Two Hysteresis band controllers have been implemented to obtain (i) a sinusoidal input source current in phase with fundamental component of line to neutral source voltage irrespective of the load conditions (ii) Charging and discharging of SMES under constant voltage control mode. DC link voltage is kept constant by DC/DC Bidirectional Converter and source current is controlled by Voltage Source Converter (VSC). The magnitude of reference source current is obtained by controlling the energy of SMES by using Fuzzy Logic Controller (FLC). As it is a nonlinear controller it gives better performance than previously used PI controller in parameter variations and load disturbances. Analysis of the circuit operation under Fuzzy controller is presented in detail. Simulation has been done in MATLAB/Simulink and results are presented demonstrating the feasibility of the proposed power conditioning system

    Design and Implementation of Hybrid Active Power Filter (HAPF) for UPS System

    Get PDF
    Hybrid Active Power Filter (HAPF) is designed and applied for Uninterrupted Power Supply (UPS) System to mitigate harmonic currents in UPS during the power conversion from rectifiers to inverters (AC-DC-AC Converters). Various UPS types and topologies are used for continuous power supply without delay and protection to connected loads. In spite of the fact that UPS is one of the power quality apparatus but it has also drawback of disturbing the power system quality of system by current harmonics and voltage distortion during conversion of power. Passive and EMI Filters could not eliminate harmonics effectively from UPS system therefore it requires modern, rapid filtering method as well combination of Active and Passive Filters. Proposed model of HAPF for UPS System could mitigate current harmonics for optimal power transfer and minimize losses, increase overall efficiency, reliability and life span of equipment. Higher harmonic current and higher voltage distortion leads to greater power loss. In this paper the (d-q) theorem is applied for the identification of harmonic currents. The d-q theorem and calculation creates the signal of reference compensation current and this produced signal of current is tracked by the yield current of the voltage source converter.. Hysteresis based controller for HAPF is applied to create the switching signals to regulate and maintain the voltage source converter output currents. Harmonics and efficiencies are analyzed at different loads and on charging and discharging of batteries of various UPS System in different industries and sectors on the basis of experimental investigation then HAPF is designed and implemented. In simulation results, it is observed that THD reduced from 46 to 10%, the harmonic currents were compensated and eliminated effectively which improved power quality of UPS System. Furthermore, addition of proposed HAPF could save the power up to 15 % which lost due to poor power quality of UPS System

    Controlador no-lineal para sistemas de almacenamiento con voltaje de salida regulado y derivada de corriente segura para la batería

    Get PDF
    This paper proposes a non-linear control structure for a hybrid energy storage system with a series architecture, which regulates the voltage of a DC bus (output voltage) and ensures that the battery current fulfills the current slew-rate restriction. The proposed solution has two stages, in the first one, the battery is connected to a buck/boost converter that feeds an auxiliary capacitor. In the second stage, the auxiliary capacitor is connected to a DC bus through a second buck/boost converter. Both converters are regulated using cascaded control systems, where the inner loops are slidingmode controllers of the inductors’ current, and the outer loops in the first and second converter are designed to limit the slew-rate of the battery current and to regulate the dc bus voltage, respectively. The paper provides the design procedure for the controllers and validates its performance with simulation results for the power system operating in charging, discharging and stand-by modes.Este artículo propone una estructura de control no-lineal para un sistema de almacenamiento híbrido con una arquitectura en serie, en la cual se regula la tensión de un bus DC (voltaje de salida) y asegura que la corriente de la batería cumpla con la restricción de velocidad de cambio en la corriente. La solución propuesta tiene dos etapas, en la primera se conecta una batería a un convertidor buck/boost que alimenta un capacitor auxiliar. En la segunda etapa, el capacitor auxiliar se conecta a un bus de DC a través de un segundo convertidor buck/boost. Ambos convertidores se regulan utilizando sistemas de control en cascada, donde los lazos internos son controladores por modos deslizantes de las corrientes de los inductores, y los lazos externos del primer y el segundo convertidor se diseñan para limitar la velocidad de cambio de la corriente en la batería y regular la tensión en el bus de DC, respectivamente. El artículo proporciona el procedimiento de diseño para los controladores y valida su desempeño con resultados de simulación considerando el sistema de potencia operando en modos de carga, descarga y almacenamiento

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    A multi-modular second life hybrid battery energy storage system for utility grid applications

    Get PDF
    The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications

    Hybrid Energy Management System Consisting of Battery and Supercapacitor for Electric Vehicle

    Get PDF
    This paper is mainly focused on Hybrid Energy Management System (HEMS) consisting of Battery (BT) and Super capacitor (SC). Two energy sources connected in with same DC link in parallel manner with the help of Bidirectional DC-DC converter, which is used to separate control of power flow of each source. Here Permanent magnet dc motor (PMDC) motor used as a load and speed control of PMDC motor can be done by PWM method for this purpose chopper circuit is used. Input of chopper circuit is DC link and output of the chopper is given to PMDC motor. This method of energy management gives power splitting between two sources based on State of Charge (SOC) of each individual source during different state of vehicle such as acceleration, constant running and deceleration. Improved filter-based power splitting techniques is implemented. Three acceleration reference points were taken for power splinting at different SOC levels of both energy sources. Objective of this proposed method is best use of both the sources i.e. battery and supercapacitor and maximum use of supercapacitor energy at the time of transient conditions. Battery supply energy during normal running condition or very less load condition. Hence during transient condition SC directly react with system and gives peak power requirement, so stress on battery is reduces hence lifetime of battery is increase, also power available during braking is store in SC and battery, so independence of Electric Vehicle (EV) is increases. Because of less peak power requirement, batteries with less peak output power is used so it is reduced size and cost of batteries. Matlab- Simulink software is used for simulation and also small scale hardware is also implemented of proposed method

    Hybrid Energy Management System Consisting of Battery and Supercapacitor for Electric Vehicle

    Get PDF
    This paper is mainly focused on Hybrid Energy Management System (HEMS) consisting of Battery (BT) and Super capacitor (SC). Two energy sources connected in with same DC link in parallel manner with the help of Bidirectional DC-DC converter, which is used to separate control of power flow of each source. Here Permanent magnet dc motor (PMDC) motor used as a load and speed control of PMDC motor can be done by PWM method for this purpose chopper circuit is used. Input of chopper circuit is DC link and output of the chopper is given to PMDC motor. This method of energy management gives power splitting between two sources based on State of Charge (SOC) of each individual source during different state of vehicle such as acceleration, constant running and deceleration. Improved filter-based power splitting techniques is implemented. Three acceleration reference points were taken for power splinting at different SOC levels of both energy sources. Objective of this proposed method is best use of both the sources i.e. battery and supercapacitor and maximum use of supercapacitor energy at the time of transient conditions. Battery supply energy during normal running condition or very less load condition. Hence during transient condition SC directly react with system and gives peak power requirement, so stress on battery is reduces hence lifetime of battery is increase, also power available during braking is store in SC and battery, so independence of Electric Vehicle (EV) is increases. Because of less peak power requirement, batteries with less peak output power is used so it is reduced size and cost of batteries. Matlab- Simulink software is used for simulation and also small scale hardware is also implemented of proposed method

    A MODIFIED C-DUMP CONVERTER FOR PMSM MACHINE USED IN A FLYWHEEL ENERGY STORAGE SYSTEM

    Get PDF
    This paper presents a modified C-dump converter for permanent magnetic synchronous (PMSM) machine used in the flywheel energy storage system. The converter can realize the energy bidirectional flowing and has the capability to recover the energy extracted from the turnoff phase of the PMSM machine. The principle of operation, modeling, and control strategy of the system has been investigated in the paper. Simulation and experimental results of the proposed system are also presented and discussed

    Imposed Switching Frequency Direct Torque Control of Induction Machine Using Five Level Flying Capacitors Inverter

    Get PDF
    The paper proposes a new control structure for sensorless induction motor drive based on a five-level voltage source inverter (VSI). The output voltages of the five-level VSI can be represented by nine groups. Then, the amplitude and the rotating velocity of the flux vector can be controlled freely. Both fast torque and optimal switching logic can be obtained. The selection is based on the value of the stator flux and the torque. This paper investigates a new control structure focused on controlling switching frequency and torque harmonics contents. These strategies, called ISFDTC, indeed combines harmoniously both these factors, without compromising the excellence of the dynamical performances typically conferred to standard DTC strategies. The validity of the proposed control technique is verified by Matlab/Simulink. Simulation results presented in this paper confirm the validity and feasibility of the proposed control approach and can be tested on experimental setup.Peer reviewe
    corecore