3,891 research outputs found

    An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems

    Full text link
    We propose a new fast algorithm for solving one of the standard approaches to ill-posed linear inverse problems (IPLIP), where a (possibly non-smooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, non-smoothness) preclude the use of off-the-shelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either total-variation or wavelet-based (or, more generally, frame-based) regularization. The proposed algorithm is an instance of the so-called "alternating direction method of multipliers", for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the state-of-the-art.Comment: 13 pages, 8 figure, 8 tables. Submitted to the IEEE Transactions on Image Processin

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Generalized Inpainting Method for Hyperspectral Image Acquisition

    Full text link
    A recently designed hyperspectral imaging device enables multiplexed acquisition of an entire data volume in a single snapshot thanks to monolithically-integrated spectral filters. Such an agile imaging technique comes at the cost of a reduced spatial resolution and the need for a demosaicing procedure on its interleaved data. In this work, we address both issues and propose an approach inspired by recent developments in compressed sensing and analysis sparse models. We formulate our superresolution and demosaicing task as a 3-D generalized inpainting problem. Interestingly, the target spatial resolution can be adjusted for mitigating the compression level of our sensing. The reconstruction procedure uses a fast greedy method called Pseudo-inverse IHT. We also show on simulations that a random arrangement of the spectral filters on the sensor is preferable to regular mosaic layout as it improves the quality of the reconstruction. The efficiency of our technique is demonstrated through numerical experiments on both synthetic and real data as acquired by the snapshot imager.Comment: Keywords: Hyperspectral, inpainting, iterative hard thresholding, sparse models, CMOS, Fabry-P\'ero

    Jump-sparse and sparse recovery using Potts functionals

    Full text link
    We recover jump-sparse and sparse signals from blurred incomplete data corrupted by (possibly non-Gaussian) noise using inverse Potts energy functionals. We obtain analytical results (existence of minimizers, complexity) on inverse Potts functionals and provide relations to sparsity problems. We then propose a new optimization method for these functionals which is based on dynamic programming and the alternating direction method of multipliers (ADMM). A series of experiments shows that the proposed method yields very satisfactory jump-sparse and sparse reconstructions, respectively. We highlight the capability of the method by comparing it with classical and recent approaches such as TV minimization (jump-sparse signals), orthogonal matching pursuit, iterative hard thresholding, and iteratively reweighted â„“1\ell^1 minimization (sparse signals)

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure
    • …
    corecore