4 research outputs found

    Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments

    Full text link
    Sparse adaptive channel estimation problem is one of the most important topics in broadband wireless communications systems due to its simplicity and robustness. So far many sparsity-aware channel estimation algorithms have been developed based on the well-known minimum mean square error (MMSE) criterion, such as the zero-attracting least mean square (ZALMS), which are robust under Gaussian assumption. In non-Gaussian environments, however, these methods are often no longer robust especially when systems are disturbed by random impulsive noises. To address this problem, we propose in this work a robust sparse adaptive filtering algorithm using correntropy induced metric (CIM) penalized maximum correntropy criterion (MCC) rather than conventional MMSE criterion for robust channel estimation. Specifically, MCC is utilized to mitigate the impulsive noise while CIM is adopted to exploit the channel sparsity efficiently. Both theoretical analysis and computer simulations are provided to corroborate the proposed methods.Comment: 29 pages, 12 figures, accepted by Journal of the Franklin Institut

    A Band-independent Variable Step Size Proportionate Normalized Subband Adaptive Filter Algorithm

    Full text link
    Proportionate-type normalized suband adaptive filter (PNSAF-type) algorithms are very attractive choices for echo cancellation. To further obtain both fast convergence rate and low steady-state error, in this paper, a variable step size (VSS) version of the presented improved PNSAF (IPNSAF) algorithm is proposed by minimizing the square of the noise-free a posterior subband error signals. A noniterative shrinkage method is used to recover the noise-free a priori subband error signals from the noisy subband error signals. Significantly, the proposed VSS strategy can be applied to any other PNSAF-type algorithm, since it is independent of the proportionate principles. Simulation results in the context of acoustic echo cancellation have demonstrated the effectiveness of the proposed method.Comment: 21 pages,8 figures, 2 tables, accepted by AEU-International Journal of Electronics and Communications on May 31, 201

    Study of Sparsity-Aware Subband Adaptive Filtering Algorithms with Adjustable Penalties

    Full text link
    We propose two sparsity-aware normalized subband adaptive filter (NSAF) algorithms by using the gradient descent method to minimize a combination of the original NSAF cost function and the l1-norm penalty function on the filter coefficients. This l1-norm penalty exploits the sparsity of a system in the coefficients update formulation, thus improving the performance when identifying sparse systems. Compared with prior work, the proposed algorithms have lower computational complexity with comparable performance. We study and devise statistical models for these sparsity-aware NSAF algorithms in the mean square sense involving their transient and steady -state behaviors. This study relies on the vectorization argument and the paraunitary assumption imposed on the analysis filter banks, and thus does not restrict the input signal to being Gaussian or having another distribution. In addition, we propose to adjust adaptively the intensity parameter of the sparsity attraction term. Finally, simulation results in sparse system identification demonstrate the effectiveness of our theoretical results.Comment: 32 pages, 14 figure

    Set-membership improved normalized subband adaptive filter algorithms for acoustic echo cancellation

    Full text link
    In order to improve the performances of recently-presented improved normalized subband adaptive filter (INSAF) and proportionate INSAF algorithms for highly noisy system, this paper proposes their set-membership versions by exploiting the theory of set-membership filtering. Apart from obtaining smaller steady-state error, the proposed algorithms significantly reduce the overall computational complexity. In addition, to further improve the steady-state performance for the algorithms, their smooth variants are developed by using the smoothed absolute subband output errors to update the step sizes. Simulation results in the context of acoustic echo cancellation have demonstrated the superiority of the proposed algorithms.Comment: 22 pages,8 figures, 3 tables,accepted by IET signal processing on 27-Jul-201
    corecore