676 research outputs found

    Radio resource allocation in relay based OFDMA cellular networks

    Get PDF
    PhDAdding relay stations (RS) between the base station (BS) and the mobile stations (MS) in a cellular system can extend network coverage, overcome multi-path fading and increase the capacity of the system. This thesis considers the radio resource allocation scheme in relay based cellular networks to ensure high-speed and reliable communication. The goal of this research is to investigate user fairness, system throughput and power consumption in wireless relay networks through considering how best to manage the radio resource. This thesis proposes a two-hop proportional fairness (THPF) scheduling scheme fair allocation, which is considered both in the first time subslot between direct link users and relay stations, and the second time subslot among relay link users. A load based relay selection algorithm is also proposed for a fair resource allocation. The transmission mode (direct transmission mode or relay transmission mode) of each user will be adjusted based on the load of the transmission node. Power allocation is very important for resource efficiency and system performance improvement and this thesis proposes a two-hop power allocation algorithm for energy efficiency, which adjusts the transmission power of the BS and RSs to make the data rate on the two hop links of one RS match each other. The power allocation problem of multiple cells with inter-cell interference is studied. A new multi-cell power allocation scheme is proposed from non-cooperative game theory; this coordinates the inter-cell interference and operates in a distributed manner. The utility function can be designed for throughput improvement and user fairness respectively. Finally, the proposed algorithms in this thesis are combined, and the system performance is evaluated. The joint radio resource allocation algorithm can achieve a very good tradeoff between throughput and user fairness, and also can significantly improve energy efficiency

    Subcarrier and Power Allocation in WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is one of the latest technologies for providing Broadband Wireless Access (BWA) in a metropolitan area. The use of orthogonal frequency division multiplexing (OFDM) transmissions has been proposed in WiMAX to mitigate the complications which are associated with frequency selective channels. In addition, the multiple access is achieved by using orthogonal frequency division multiple access (OFDMA) scheme which has several advantages such as flexible resource allocation, relatively simple transceivers, and high spectrum efficient. In OFDMA the controllable resources are the subcarriers and the allocated power per subband. Moreover, adaptive subcarrier and power allocation techniques have been selected to exploit the natural multiuser diversity. This leads to an improvement of the performance by assigning the proper subcarriers to the user according to their channel quality and the power is allocated based on water-filling algorithm. One simple method is to allocate subcarriers and powers equally likely between all users. It is well known that this method reduces the spectral efficiency of the system, hence, it is not preferred unless in some applications. In order to handle the spectral efficiency problem, in this thesis we discuss three novel resources allocation algorithms for the downlink of a multiuser OFDM system and analyze the algorithm performances based on capacity and fairness measurement. Our intensive simulations validate the algorithm performances.fi=OpinnÀytetyö kokotekstinÀ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LÀrdomsprov tillgÀngligt som fulltext i PDF-format

    Energy efficient resources allocations for wireless communication systems

    Get PDF
    The energy consumption level of the telecommunication process has become a new consideration in resource management scheme. It is becoming a new parameter in the resource management scheme besides throughput, spectral efficiency, and fairness. This work proposes a power control scheme and user grouping method to keep the rational energy consumption level of the resource management scheme. Inverse water-filling power allocation is a power allocation scheme that optimizes the energy efficiency by giving the power to the user which have good channel conditions. The user grouping method becomes the solution for carrier aggregation (CA) scheme that prevents edge cell user get the resources from the high-frequency carrier. This can prevent energy wastage in the transmission process. This power control scheme and user grouping method can optimize the spectral and energy efficiency without increasing the time complexity of the system

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Power efficient dynamic resource scheduling algorithms for LTE

    Get PDF

    EficiĂȘncia energĂ©tica avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotĂ©cnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação mĂłveis, estimulado por um crescimento esperado do trĂĄfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema mĂłvel 3GPP LTE-Advanced adoptou a tĂ©cnica de transmissĂŁo Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido Ă  sua capacidade de mitigar e gerir InterferĂȘncia entre CĂ©lulas (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da cĂ©lula utilizam recursos comuns com diferentes nĂ­veis de energia, como acontece nos chamados ambientes de redes heterogĂ©neas (sigla Het- Net na literatura). As HetNets sĂŁo constituĂ­das por duas ou mais camadas de cĂ©lulas. A primeira, ou camada superiora, constitui uma implantação tradicional de sĂ­tios de cĂ©lula, muitas vezes referidas neste contexto como macrocells. Os nĂ­veis mais baixos sĂŁo designados por cĂ©lulas pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissĂ”es de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vĂĄrios dos principais obstĂĄculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rĂĄdio para um controlo e gestĂŁo mais apertado de interferĂȘncia nas HetNets. Com recurso a simulação a nĂ­Ă­vel de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluĂ­ram que ganhos at e a ordem dos 20% poderĂŁo ser atingidos em termos de eficiĂȘncia energĂ©tica
    • 

    corecore