2 research outputs found

    Randomized Reference Classifier with Gaussian Distribution and Soft Confusion Matrix Applied to the Improving Weak Classifiers

    Full text link
    In this paper, an issue of building the RRC model using probability distributions other than beta distribution is addressed. More precisely, in this paper, we propose to build the RRR model using the truncated normal distribution. Heuristic procedures for expected value and the variance of the truncated-normal distribution are also proposed. The proposed approach is tested using SCM-based model for testing the consequences of applying the truncated normal distribution in the RRC model. The experimental evaluation is performed using four different base classifiers and seven quality measures. The results showed that the proposed approach is comparable to the RRC model built using beta distribution. What is more, for some base classifiers, the truncated-normal-based SCM algorithm turned out to be better at discovering objects coming from minority classes.Comment: arXiv admin note: text overlap with arXiv:1901.0882

    A dynamic model of classifier competence based on the local fuzzy confusion matrix and the random reference classifier

    No full text
    Nowadays, multiclassifier systems (MCSs) are being widely applied in various machine learning problems and in many different domains. Over the last two decades, a variety of ensemble systems have been developed, but there is still room for improvement. This paper focuses on developing competence and interclass cross-competence measures which can be applied as a method for classifiers combination. The cross-competence measure allows an ensemble to harness pieces of information obtained from incompetent classifiers instead of removing them from the ensemble. The cross-competence measure originally determined on the basis of a validation set (static mode) can be further easily updated using additional feedback information on correct/incorrect classification during the recognition process (dynamic mode). The analysis of computational and storage complexity of the proposed method is presented. The performance of the MCS with the proposed cross-competence function was experimentally compared against five reference MCSs and one reference MCS for static and dynamic modes, respectively. Results for the static mode show that the proposed technique is comparable with the reference methods in terms of classification accuracy. For the dynamic mode, the system developed achieves the highest classification accuracy, demonstrating the potential of the MCS for practical applications when feedback information is available
    corecore