14,189 research outputs found

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Sistema de bloqueio de computadores

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaThe use of multiple computing devices per person is increasing more and more. Nowadays is normal that mobile devices like smartphones, tablets and laptops are present in the everyday life of a single person and in many cases people use these devices to perform important operations related with their professional life. This also presents a problem, as these devices come with the user in everyday life and the fact that often they have a high monetary value means that these devices are susceptible to theft. This thesis introduces a computer locking system that distinguishes itself from existing similar systems because (i) it is designed to work independently of the Operating System(s) installed on the laptop or mobile device, (ii) depends on a firrmware driver that implements the lock operation making it resistant to storage device formats or any other attack that uses software operations. It is also explored the operation of a device that has a firrmware that follows the Unified Extensible Firmware Interface (UEFI) specification as well as the development of drivers for this type of firrmware. It was also developed a security protocol and various cryptographic techniques where explored and implemented.O uso de vários dispositivos computacionais por pessoa está a aumentar cada vez mais. Hoje em dia é normal dispositivos móveis como o smartphone, tablet e computador portátil estarem presentes no quotidiano das pessoas e em muitos casos as pessoas necessitam de realizar tarefas na sua vida profissional nestes dispositivos. Isto apresenta também um problema, como estes dispositivos acompanham o utilizador no dia a dia e pelo facto de muitas vezes terem um valor monetário elevado faz com que estes dispositivos sejam suscetíveis a roubos. Esta tese introduz um sistema de bloqueio de computadores que se distingue dos sistemas similares existentes porque, (i) _e desenhado para funcionar independentemente do(s) sistema(s) operativo(s) instalado(s) no computador portátil ou no dispositivo móvel, (ii) depende de um driver do firrmware que concretiza a operação de bloqueio fazendo com que seja resistente contra formatação do dispositivo de armazenamento ou qualquer outro ataque que tenho por base a utilização de software. É explorado então o funcionamento de um dispositivo que tenha um firmware que respeita a especificação Unfied Extensible Firmware Interface (UEFI) assim como a programação de drivers para este tipo de firmware. Foi também desenvolvido um protocolo de segurança e são exploradas várias técnicas criptográficas passiveis de serem implementadas

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning

    Full text link
    Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.Comment: 36 Pages, 16 Figures, accepted at journal Additive Manufacturin

    Offline and Online Models for Learning Pairwise Relations in Data

    Get PDF
    Pairwise relations between data points are essential for numerous machine learning algorithms. Many representation learning methods consider pairwise relations to identify the latent features and patterns in the data. This thesis, investigates learning of pairwise relations from two different perspectives: offline learning and online learning.The first part of the thesis focuses on offline learning by starting with an investigation of the performance modeling of a synchronization method in concurrent programming using a Markov chain whose state transition matrix models pairwise relations between involved cores in a computer process.Then the thesis focuses on a particular pairwise distance measure, the minimax distance, and explores memory-efficient approaches to computing this distance by proposing a hierarchical representation of the data with a linear memory requirement with respect to the number of data points, from which the exact pairwise minimax distances can be derived in a memory-efficient manner. Then, a memory-efficient sampling method is proposed that follows the aforementioned hierarchical representation of the data and samples the data points in a way that the minimax distances between all data points are maximally preserved. Finally, the thesis proposes a practical non-parametric clustering of vehicle motion trajectories to annotate traffic scenarios based on transitive relations between trajectories in an embedded space.The second part of the thesis takes an online learning perspective, and starts by presenting an online learning method for identifying bottlenecks in a road network by extracting the minimax path, where bottlenecks are considered as road segments with the highest cost, e.g., in the sense of travel time. Inspired by real-world road networks, the thesis assumes a stochastic traffic environment in which the road-specific probability distribution of travel time is unknown. Therefore, it needs to learn the parameters of the probability distribution through observations by modeling the bottleneck identification task as a combinatorial semi-bandit problem. The proposed approach takes into account the prior knowledge and follows a Bayesian approach to update the parameters. Moreover, it develops a combinatorial variant of Thompson Sampling and derives an upper bound for the corresponding Bayesian regret. Furthermore, the thesis proposes an approximate algorithm to address the respective computational intractability issue.Finally, the thesis considers contextual information of road network segments by extending the proposed model to a contextual combinatorial semi-bandit framework and investigates and develops various algorithms for this contextual combinatorial setting

    Integrative multi-omics analysis for the effect of genetic alterations in cancer xenograft and organoid models

    Get PDF
    Department of Biomedical EngineeringDNA damage is a well-recognized factor in the development and progression of cancer. Numerous studies on genetic changes associated with cancer or the DNA repair pathway have been conducted, however, there is still a need for additional research on their function. The establishment of patient-derived xenografts or organoids for the purpose of testing functional genomic approaches is the subject of ongoing research. According to model-specific characteristics, it is not fully understood how these attempts to simulate patient cancer differ from original cancer. To comprehend the distinction between genuine patient cancer and these patient-derived disease models in more depth, multi-omics analysis is required to comprehend the overall genotypes, phenotypes, and environmental variables. Depending on the characteristics of each disease model, distinct omics analysis approaches and factors must be considered. In addition, care must be taken to avoid technical errors when integrating omics data generated by different sequencing equipment. There is currently no golden rule for data integration, but several approaches are being developed. It is crucial to determine the function of genes linked with the DNA repair pathway because these genes contribute to the induction or prevention of cancer. In chapter 1, I identified the interaction between MRE11 and TRIP13 through proximity labeling combined with the SILAC method which is quantitative proteomics using metabolic labeling. TRIP13 depletion doesn???t affect the nuclease activity and conformation of the MRN complex but directly inhibits the interaction of MDC1 with MRN complex and MDC1 recruitment on the DNA damage site. TRIP13 degradation with mirin treatment shows additive effects on ATM signaling activation. In conclusion, TRIP13 regulates immediate-early DNA damage sensing through MRE11 and ATM signaling independently of mirin. When assessing the functional genomic approach using patient-derived disease models, it is essential to determine which aspects of the models' correlation to actual cancer should be properly considered. In chapter 2, I found there are a few overlapped deleterious somatic mutations of the PDX model and their original tumor. I suspected novel mutagen exposure during PDX establishment or sample contamination. However, germline mutations of PDX models are well conserved from original tumors, and their mutational signatures of PDX also mimic that of their tumor. Though the number of overlapped mutations between the PDX model and their tumor was few, brain tumor-specific mutations are found in PDX samples. Especially, histone methylation- and cilia-related gene mutations are enriched in PDX samples. While it suggested these mutated genes are needed for maintaining the stemness of brain tumor PDX model or PDX model would be more appropriate for the samples with high heterogeneity, I have presented precautions and considerations in PDX model genome analysis. Multi-omics analysis that takes into consideration genetic, expressive, and clinical aspects can provide important information for the study of diseases with complicated etiologies, such as cancer, and can contribute to the development of diagnosis and treatment. To utilize colorectal cancer organoids for Companion Diagnostics (CDx), in chapter 3, I characterized patient-derived colorectal cancer (CRC) organoids through well-known genomic markers such as Tumor mutation burden (TMB), Microsatellite instability (MSI) and propose a novel grouping method using sharing same mutation site. The classification of CRC patients was more detailed combined with consensus molecular subtype (CMS) classifications. Additionally, I extract the expression features of the patients who experience recurrence or metastasis after first-line chemotherapy treatment with reference to clinical data. Drug response of CRC organoids by patient group and knockdown of the extracted features in the selected organoids would be validated in further study. In summary, with this dissertation, I conducted functional research on the DNA repair pathway of cancer-related genes, as well as the genetic analysis between patient-derived xenograft and original tumors, and introduced a novel perspective on the diagnosis and treatment of colorectal cancer patients using patient-derived organoids through multi-omics analysis.ope

    Critical Review on Internet of Things (IoT): Evolution and Components Perspectives

    Get PDF
    Technological advancement in recent years has transformed the internet to a network where everything is linked, and everyday objects can be recognised and controlled. This interconnection is popularly termed as the Internet of Things (IoT). Although, IoT remains popular in academic literature, limited studies have focused on its evolution, components, and implications for industries. Hence, the focus of this book chapter is to explore these dimensions, and their implications for industries. The study adopted the critical review method, to address these gaps in the IoT literature for service and manufacturing industries. Furthermore, the relevance for IoT for service and manufacturing industries were also discussed. While the impact of IoT in the next five years is expected to be high by industry practitioners, experts consider the current degree of its implementation across industry to be on the average. This critical review contributes theoretically to the literature on IoT. In effect, the intense implementation of the IoT, IIoT and IoS will go a long way in ensuring improvements in various industries that would in the long run positively impact the general livelihood of people as well as the way of doing things. Practical implications and suggestions for future studies have been discussed

    Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for Disassembly of Electric Vehicle Batteries

    Full text link
    Disassembly of electric vehicle batteries is a critical stage in recovery, recycling and re-use of high-value battery materials, but is complicated by limited standardisation, design complexity, compounded by uncertainty and safety issues from varying end-of-life condition. Telerobotics presents an avenue for semi-autonomous robotic disassembly that addresses these challenges. However, it is suggested that quality and realism of the user's haptic interactions with the environment is important for precise, contact-rich and safety-critical tasks. To investigate this proposition, we demonstrate the disassembly of a Nissan Leaf 2011 module stack as a basis for a comparative study between a traditional asymmetric haptic-'cobot' master-slave framework and identical master and slave cobots based on task completion time and success rate metrics. We demonstrate across a range of disassembly tasks a time reduction of 22%-57% is achieved using identical cobots, yet this improvement arises chiefly from an expanded workspace and 1:1 positional mapping, and suffers a 10-30% reduction in first attempt success rate. For unbolting and grasping, the realism of force feedback was comparatively less important than directional information encoded in the interaction, however, 1:1 force mapping strengthened environmental tactile cues for vacuum pick-and-place and contact cutting tasks.Comment: 21 pages, 12 figures, Submitted to Frontiers in Robotics and AI; Human-Robot Interactio
    corecore