1,074 research outputs found

    Approximate Convex Optimization by Online Game Playing

    Full text link
    Lagrangian relaxation and approximate optimization algorithms have received much attention in the last two decades. Typically, the running time of these methods to obtain a ϵ\epsilon approximate solution is proportional to 1ϵ2\frac{1}{\epsilon^2}. Recently, Bienstock and Iyengar, following Nesterov, gave an algorithm for fractional packing linear programs which runs in 1ϵ\frac{1}{\epsilon} iterations. The latter algorithm requires to solve a convex quadratic program every iteration - an optimization subroutine which dominates the theoretical running time. We give an algorithm for convex programs with strictly convex constraints which runs in time proportional to 1ϵ\frac{1}{\epsilon}. The algorithm does NOT require to solve any quadratic program, but uses gradient steps and elementary operations only. Problems which have strictly convex constraints include maximum entropy frequency estimation, portfolio optimization with loss risk constraints, and various computational problems in signal processing. As a side product, we also obtain a simpler version of Bienstock and Iyengar's result for general linear programming, with similar running time. We derive these algorithms using a new framework for deriving convex optimization algorithms from online game playing algorithms, which may be of independent interest

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    GMRES-Accelerated ADMM for Quadratic Objectives

    Full text link
    We consider the sequence acceleration problem for the alternating direction method-of-multipliers (ADMM) applied to a class of equality-constrained problems with strongly convex quadratic objectives, which frequently arise as the Newton subproblem of interior-point methods. Within this context, the ADMM update equations are linear, the iterates are confined within a Krylov subspace, and the General Minimum RESidual (GMRES) algorithm is optimal in its ability to accelerate convergence. The basic ADMM method solves a κ\kappa-conditioned problem in O(κ)O(\sqrt{\kappa}) iterations. We give theoretical justification and numerical evidence that the GMRES-accelerated variant consistently solves the same problem in O(κ1/4)O(\kappa^{1/4}) iterations for an order-of-magnitude reduction in iterations, despite a worst-case bound of O(κ)O(\sqrt{\kappa}) iterations. The method is shown to be competitive against standard preconditioned Krylov subspace methods for saddle-point problems. The method is embedded within SeDuMi, a popular open-source solver for conic optimization written in MATLAB, and used to solve many large-scale semidefinite programs with error that decreases like O(1/k2)O(1/k^{2}), instead of O(1/k)O(1/k), where kk is the iteration index.Comment: 31 pages, 7 figures. Accepted for publication in SIAM Journal on Optimization (SIOPT

    A Quantum Interior Point Method for LPs and SDPs

    Full text link
    We present a quantum interior point method with worst case running time O~(n2.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{2.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for SDPs and O~(n1.5ξ2μκ3log(1/ϵ))\widetilde{O}(\frac{n^{1.5}}{\xi^{2}} \mu \kappa^3 \log (1/\epsilon)) for LPs, where the output of our algorithm is a pair of matrices (S,Y)(S,Y) that are ϵ\epsilon-optimal ξ\xi-approximate SDP solutions. The factor μ\mu is at most 2n\sqrt{2}n for SDPs and 2n\sqrt{2n} for LP's, and κ\kappa is an upper bound on the condition number of the intermediate solution matrices. For the case where the intermediate matrices for the interior point method are well conditioned, our method provides a polynomial speedup over the best known classical SDP solvers and interior point based LP solvers, which have a worst case running time of O(n6)O(n^{6}) and O(n3.5)O(n^{3.5}) respectively. Our results build upon recently developed techniques for quantum linear algebra and pave the way for the development of quantum algorithms for a variety of applications in optimization and machine learning.Comment: 32 page
    corecore