26,700 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Lifting from the Deep: Convolutional 3D Pose Estimation from a Single Image

    Get PDF
    We propose a unified formulation for the problem of 3D human pose estimation from a single raw RGB image that reasons jointly about 2D joint estimation and 3D pose reconstruction to improve both tasks. We take an integrated approach that fuses probabilistic knowledge of 3D human pose with a multi-stage CNN architecture and uses the knowledge of plausible 3D landmark locations to refine the search for better 2D locations. The entire process is trained end-to-end, is extremely efficient and obtains state- of-the-art results on Human3.6M outperforming previous approaches both on 2D and 3D errors.Comment: Paper presented at CVPR 1

    Hierarchical Deep Learning Architecture For 10K Objects Classification

    Full text link
    Evolution of visual object recognition architectures based on Convolutional Neural Networks & Convolutional Deep Belief Networks paradigms has revolutionized artificial Vision Science. These architectures extract & learn the real world hierarchical visual features utilizing supervised & unsupervised learning approaches respectively. Both the approaches yet cannot scale up realistically to provide recognition for a very large number of objects as high as 10K. We propose a two level hierarchical deep learning architecture inspired by divide & conquer principle that decomposes the large scale recognition architecture into root & leaf level model architectures. Each of the root & leaf level models is trained exclusively to provide superior results than possible by any 1-level deep learning architecture prevalent today. The proposed architecture classifies objects in two steps. In the first step the root level model classifies the object in a high level category. In the second step, the leaf level recognition model for the recognized high level category is selected among all the leaf models. This leaf level model is presented with the same input object image which classifies it in a specific category. Also we propose a blend of leaf level models trained with either supervised or unsupervised learning approaches. Unsupervised learning is suitable whenever labelled data is scarce for the specific leaf level models. Currently the training of leaf level models is in progress; where we have trained 25 out of the total 47 leaf level models as of now. We have trained the leaf models with the best case top-5 error rate of 3.2% on the validation data set for the particular leaf models. Also we demonstrate that the validation error of the leaf level models saturates towards the above mentioned accuracy as the number of epochs are increased to more than sixty.Comment: As appeared in proceedings for CS & IT 2015 - Second International Conference on Computer Science & Engineering (CSEN 2015

    Online Resource Inference in Network Utility Maximization Problems

    Full text link
    The amount of transmitted data in computer networks is expected to grow considerably in the future, putting more and more pressure on the network infrastructures. In order to guarantee a good service, it then becomes fundamental to use the network resources efficiently. Network Utility Maximization (NUM) provides a framework to optimize the rate allocation when network resources are limited. Unfortunately, in the scenario where the amount of available resources is not known a priori, classical NUM solving methods do not offer a viable solution. To overcome this limitation we design an overlay rate allocation scheme that attempts to infer the actual amount of available network resources while coordinating the users rate allocation. Due to the general and complex model assumed for the congestion measurements, a passive learning of the available resources would not lead to satisfying performance. The coordination scheme must then perform active learning in order to speed up the resources estimation and quickly increase the system performance. By adopting an optimal learning formulation we are able to balance the tradeoff between an accurate estimation, and an effective resources exploitation in order to maximize the long term quality of the service delivered to the users
    • …
    corecore