3,322 research outputs found

    CoCoA: A General Framework for Communication-Efficient Distributed Optimization

    Get PDF
    The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers

    Minimizing total inventory cost on a single machine in just-in-time manufacturing

    Get PDF
    The just-in-time concept decrees not to accept ordered goods before their due dates in order to avoid inventory cost. This bounces the inventory cost back to the manufacturer: products that are completed before their due dates have to be stored. Reducing this type of storage cost by preclusion of early completion conflicts with the traditional policy of keeping work-in-process inventories down. This paper addresses a single-machine scheduling problem with the objective of minimizing total inventory cost, comprising cost associated with work-in-process inventories and storage cost as a result of early completion. The cost components are measured by the sum of the job completion times and the sum of the job earlinesses. This problem differs from more traditional scheduling problems, since the insertion of machine idle time may reduce total cost. The search for an optimal schedule, however, can be limited to the set of job sequences, since for any sequence there is a clear-cut way to insert machine idle time in order to minimize total inventory cost. We apply branch-and-bound to identify an optimal schedule. We present five approaches for lower bound calculation, based upon relaxation of the objective function, of the state space, and upon Lagrangian relaxation. Key Words and Phrases: just-in-time manufacturing, inventory cost, work-in-process inventory, earliness, tardiness, machine idle time, branch-and-bound algorithm, Lagrangian relaxation

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers
    • …
    corecore