26,269 research outputs found

    A simple model of unbounded evolutionary versatility as a largest-scale trend in organismal evolution

    Get PDF
    The idea that there are any large-scale trends in the evolution of biological organisms is highly controversial. It is commonly believed, for example, that there is a large-scale trend in evolution towards increasing complexity, but empirical and theoretical arguments undermine this belief. Natural selection results in organisms that are well adapted to their local environments, but it is not clear how local adaptation can produce a global trend. In this paper, I present a simple computational model, in which local adaptation to a randomly changing environment results in a global trend towards increasing evolutionary versatility. In this model, for evolutionary versatility to increase without bound, the environment must be highly dynamic. The model also shows that unbounded evolutionary versatility implies an accelerating evolutionary pace. I believe that unbounded increase in evolutionary versatility is a large-scale trend in evolution. I discuss some of the testable predictions about organismal evolution that are suggested by the model

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl
    corecore