5,393 research outputs found

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    Collision-free Time Slot Reuse in Multi-hop Wireless Sensor Networks

    Get PDF
    To ensure a long-lived network of wireless communicating sensors, we are in need of a medium access control protocol that is able to prevent energy-wasting effects like idle listening, hidden terminal problem or collision of packets. Schedule-based medium access protocols are in general robust against these effects, but require a mechanism to establish a non-conflicting schedule. In this paper, we present such a mechanism which allows wireless sensors to choose a time interval for transmission, which is not interfering or causing collisions with other transmissions. In our solution, we do not assume any hierarchical organization in the network and all operation is localized. We empirically show that our localized algorithm is successful within a factor 2 of the minimum necessary time slots in random networks; well in range of the expected (worst case) factor 3-approximation of known first-fit algorithms. Our algorithm assures similar minimum distance between simultaneous transmissions as CSMA(/CD)-based approaches

    Future Evolution of CSMA Protocols for the IEEE 802.11 Standard

    Full text link
    In this paper a candidate protocol to replace the prevalent CSMA/CA medium access control in Wireless Local Area Networks is presented. The proposed protocol can achieve higher throughput than CSMA/CA, while maintaining fairness, and without additional implementation complexity. Under certain circumstances, it is able to reach and maintain collision-free operation, even when the number of contenders is variable and potentially large. It is backward compatible, allowing for new and legacy stations to coexist without degrading one another's performance, a property that can make the adoption process by future versions of the standard smooth and inexpensive.Comment: This paper has been accepted in the Second IEEE ICC Workshop 2013 on Telecommunication Standards: From Research to Standard

    Sidelobe Control in Collaborative Beamforming via Node Selection

    Full text link
    Collaborative beamforming (CB) is a power efficient method for data communications in wireless sensor networks (WSNs) which aims at increasing the transmission range in the network by radiating the power from a cluster of sensor nodes in the directions of the intended base station(s) or access point(s) (BSs/APs). The CB average beampattern expresses a deterministic behavior and can be used for characterizing/controling the transmission at intended direction(s), since the mainlobe of the CB beampattern is independent on the particular random node locations. However, the CB for a cluster formed by a limited number of collaborative nodes results in a sample beampattern with sidelobes that severely depend on the particular node locations. High level sidelobes can cause unacceptable interference when they occur at directions of unintended BSs/APs. Therefore, sidelobe control in CB has a potential to increase the network capacity and wireless channel availability by decreasing the interference. Traditional sidelobe control techniques are proposed for centralized antenna arrays and, therefore, are not suitable for WSNs. In this paper, we show that distributed, scalable, and low-complexity sidelobe control techniques suitable for CB in WSNs can be developed based on node selection technique which make use of the randomness of the node locations. A node selection algorithm with low-rate feedback is developed to search over different node combinations. The performance of the proposed algorithm is analyzed in terms of the average number of trials required to select the collaborative nodes and the resulting interference. Our simulation results approve the theoretical analysis and show that the interference is significantly reduced when node selection is used with CB.Comment: 30 pages, 10 figures, submitted to the IEEE Trans. Signal Processin

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201
    corecore