17,907 research outputs found

    Resource Allocation for Network-Integrated Device-to-Device Communications Using Smart Relays

    Full text link
    With increasing number of autonomous heterogeneous devices in future mobile networks, an efficient resource allocation scheme is required to maximize network throughput and achieve higher spectral efficiency. In this paper, performance of network-integrated device-to-device (D2D) communication is investigated where D2D traffic is carried through relay nodes. An optimization problem is formulated for allocating radio resources to maximize end-to-end rate as well as conversing QoS requirements for cellular and D2D user equipment under total power constraint. Numerical results show that there is a distance threshold beyond which relay-assisted D2D communication significantly improves network performance when compared to direct communication between D2D peers

    Delay-Optimal Relay Selection in Device-to-Device Communications for Smart Grid

    Get PDF
    The smart grid communication network adopts a hierarchical structure which consists of three kinds of networks which are Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). The smart grid NANs comprise of the communication infrastructure used to manage the electricity distribution to the end users. Cellular technology with LTE-based standards is a widely-used and forward-looking technology hence becomes a promising technology that can meet the requirements of different applications in NANs. However, the LTE has a limitation to cope with the data traffic characteristics of smart grid applications, thus require for enhancements. Device-to-Device (D2D) communications enable direct data transmissions between devices by exploiting the cellular resources, which could guarantee the improvement of LTE performances. Delay is one of the important communication requirements for the real-time smart grid applications. In this paper, the application of D2D communications for the smart grid NANs is investigated to improve the average end-to-end delay of the system. A relay selection algorithm that considers both the queue state and the channel state of nodes is proposed. The optimization problem is formulated as a constrained Markov decision process (CMDP) and a linear programming method is used to find the optimal policy for the CMDP problem. Simulation results are presented to prove the effectiveness of the proposed scheme

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Get PDF
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page
    • …
    corecore